Construction of Mixed-Level Orthogonal Arrays for Testing in Digital Marketing Vladimir Brayman Webtrends October 19, 2012 ## Advantages of Conducting Designed Experiments in Digital Marketing - Availability of Data - Ease of Creating Tests - Automation of the Analysis # Challenges of Conducting Designed Experiments in Digital Marketing - Wide Range of Factor-Level Combinations, Including Mixed-Level Designs - ▶ Binary and continuous response variable - Designs Must Be Small - Designs Must Be Robust - Must Isolate Effects - Must Produce Results Fast - Unsophisticated Users Robustness - Motivation - Fractional Factorial Design - Clear Effects - Minimum Aberration Criterion - Orthogonal Array Construction - Conclusion ## Fractional Factorial Design Motivation: for economic reasons, full factorial designs are seldom used in practice for large k ($k \ge 7$). **Fractional Factorial Design**: a subset or fraction of full factorial designs. - "Optimal" fractions: are chosen according to the resolution or minimum aberration criteria. - Aliasing of effects: a price one must pay for choosing a smaller design. Design r^{k-p} , where - r: level of the factors. - k: number of the factors. - p: number of design generators. - $ightharpoonup n = r^{k-p}$: run size. ## An Example | No. | Α | В | C | D | Ε | |-----|---|---|---|---|---| | 1 | _ | + | + | _ | _ | | 2 | + | + | + | + | _ | | 3 | _ | _ | + | + | _ | | 4 | + | _ | + | _ | _ | | 5 | _ | + | _ | + | _ | | 6 | + | + | _ | _ | _ | | 7 | _ | _ | _ | _ | _ | | 8 | + | _ | _ | + | _ | | 9 | _ | + | + | _ | + | | 10 | + | + | + | + | + | | 11 | _ | _ | + | + | + | | 12 | + | _ | + | _ | + | | 13 | — | + | _ | + | + | | 14 | + | + | _ | _ | + | | 15 | _ | _ | _ | _ | + | | 16 | + | _ | _ | + | + | ## Balance and Orthogonality Two key properties of the designs: **balance** and **orthogonality**. - Balance: Each factor level appears in the same number of runs. - Orthogonality: Two factors are called orthogonal if all their level combinations appear in the same number of runs. A design is called orthogonal if all pairs of its factors are orthogonal. ### **Design Generators** - ▶ 2^{5-1} design: 16 runs, which is a $\frac{1}{2}$ fraction of a 2^5 full factorial design. - ▶ Aliasing: D and ABC, i.e., main effect of D is aliased with the $A \times B \times C$ interaction. - ► The aliasing is denoted by the **design generator** D = ABC, $x_4 = x_1 + x_2 + x_3 \pmod{2}$. - Since $2x_4 = x_1 + x_2 + x_3 + x_4 = 0 \pmod{2}$, we can get the **defining relation** $I = ABCD \ (I = 1234)$. | | Number | Factors | |--------------|--------|--------------------------| | Main effects | 5 | A,B,C,D,E | | Two-factor | 10 | AB,AC,AD,AE,BC,,DE | | Three-factor | 10 | ABC,ABD,ABE,BCD,,CDE | | Four-factor | 5 | ABCD,ABCE,ABDE,ACDE,BCDE | | Five-factor | 1 | ABCDE | - Motivation - Fractional Factorial Design - Clear Effects - Minimum Aberration Criterion - Orthogonal Array Construction - Conclusion #### Clear Main Effects and Two-factor Interaction Effects **Clear effect**: a main effect or two-factor interaction is clear if none of its aliases are main effects or two-factor interactions. | | Number | Factors | | |--------------|--------|-------------|--| | Main effects | 5 | A,B,C,D,E | | | Two-factor | 4 | AE,BE,CE,DE | | From $x_1 + x_2 + x_3 + x_4 = 0 \pmod{2}$, we can get: - ▶ A = BCD, B = ACD, C = ABD, so all the main effects are clear. - ► AB = CD, AC = BD, AD = BC, ..., AE = BCDE, BE = ACDE, CE = ABDE, DE = ABCE, so only the two-factor interactions including E are clear, all the others aliased with other two-factor interactions. ## More Than One Design Generators Consider the 2^{6-2} design with design generators: E = AB, F = ACD. - ► We get the **defining contrast subgroups**: I = ABE = ACDF = BCDEF. - ▶ A_i : the number of words of length i in its defining contrast subgroup, wordlength pattern $W = (A_3, A_4, ..., A_k)$. - ▶ **Resolution**: the smallest r such that $A_r \ge 1$, i.e., the length of the shortest word in the defining contrast subgroup. - ▶ The above design, resolution R = 3 and W = (1, 1, 1, 0, 0, ...). - ▶ Maximum Resolution Criterion: Box and Hunter (1961). - Resolution III design, some main effects are not clear. - Resolution IV design, main effects are clear, those with the largest number of clear two-factor interactions are the best. - Resolution V design, two-factor interactions are clear. - Motivation - Fractional Factorial Design - Clear Effects - Minimum Aberration Criterion - Orthogonal Array - Conclusion #### Minimum Aberration Criterion - ▶ Question: for the same r^{k-p} designs d_1 and d_2 with different design generators, which one is better? - ► Consider the following two 2⁷⁻² designs: ``` d_1: I = 4567 = 12346 = 12357, d_2: I = 1236 = 1457 = 234567. ``` - Fries and Hunter (1980): For any two 2^{k-p} designs d_1 and d_2 , let r be the smallest integer such that $A_r(d_1) \neq A_r(d_2)$. Then d_1 is said to have **less aberration** than d_2 if $A_r(d_1) < A_r(d_2)$. If there is no design with less aberration than d_1 , then d_1 has **minimum aberration**. - For the above d_1 and d_2 , we have wordlength patterns: $W(d_1) = (0, 1, 2, 0, 0)$, $W(d_2) = (0, 2, 0, 1, 0)$, so d_1 is better than d_2 . #### Maximum Number of Clear Effects Criterion ► Consider the following two 2⁹⁻⁴ designs: $$d_1$$: 6 = 123,7 = 124,8 = 125,9 = 1345, d_2 : 6 = 123,7 = 124,8 = 134,9 = 2345. d_1 : $I = 1236 = 1247 = 1258 = 3467 = 3568 = 4578,$ d_2 : $I = 1236 = 1247 = 1348 = 3467 = 2468 = 2378 = 1678.$ ▶ For the above d_1 and d_2 , we have: $$A_3(d_1) = A_3(d_2) = 0$$, $A_4(d_1) = 6 < A_4(d_2) = 7$, so d_1 is better than d_2 from minimum aberration criterion. ▶ While all the 9 main effects in d_1 and d_2 are clear, d_2 has 15 clear two-factor interactions but d_1 has only 8, so one would judge that d_2 is better than d_1 . ## Experiments at Mixed Levels - ▶ When r = 3, $A \times B$: AB, AB^2 , $A \times B \times C$: ABC, ABC^2 , AB^2C , AB^2C^2 . - Consider a $2^{3-1} \times 3^{3-1}$ (asymmetric) **product** design: d_1 : C = AB for the two-level factors A, B, C; I = ABC. d_2 : D = EF for the three-level factors D, E, F; $I = DEF^2$. - ▶ Type 1: find 3 aliasing relations A_1 , A_2 , A_3 of the two-level factors A, B, C, from C = AB: $$A_1$$: $A = BC$ A_2 : $B = AC$ A_3 : $C = AB$ ▶ Type 2: find 4 aliasing relations B_1 , B_2 , B_3 , B_4 of the three-level factors D, E, F, from D = EF: $$B_1$$: $D = DE^2F = EF^2$ B_2 : $E = DF^2 = DE^2F^2$ B_3 : $F = DE = DEF$ B_4 : $DE^2 = DF = EF$. ## Experiments at Mixed Levels (Continued) Type 2 aliasing relations: C_1 (from A_1 and B_1): $AD = ADE^2F = AEF^2 = BCD = BCDE^2 = BCDEF^2$. C_2 (from A_1 and B_2): $AE = ADF^2 = ADE^2F^2 = BCE = BCDF^2 = BCDE^2F^2$. C_3 : AF = ADE = ADEF = BCF = BCDE = BCDEF. C_{Δ} : $ADE^2 = ADF = AEF = BCDE^2 = BCDF = BCEF$. C_5 : $BD = BDE^2F = BEF^2 = ACD = ACDE^2F = ACEF^2$. C_6 : $BE = BDF^2 = BDE^2F^2 = ACE = ACDF^2 = ACDE^2F^2$. C_7 : BF = BDE = BDEF = ACF = ACDE = ACDEF. C_8 : $BDE^2 = BDF = BEF = ACDE^2 = ACDF = ACEF$. C_0 : $CD = CDE^2F = CEF^2 = ABD = ABDE^2F = ABEF^2$. C_{10} : $CE = CDF^2 = CDE^2F^2 = ABE = ABDF^2F = ABDE^2F^2$. C_{11} : CF = CDE = CDEF = ABF = ABDE = ABDEF. C_{12} : $CDE^2 = CDF = CEF = ABDE^2 = ABDF = ABEF$. ▶ Type 3: find 12 aliasing relations C_1 to C_{12} from Type 1 and - Motivation - Fractional Factorial Design - Clear Effects - Minimum Aberration Criterion - Orthogonal Array Construction - Conclusion ## Orthogonal Array Construction Problem Problem: given factors vector, R, how to construct the orthogonal array (OA) (design matrix) that has the minimum possible run size n? - ightharpoonup R=3 or R=4 for symmetric design. - For asymmetric design, we define $R = min(R_1, R_2, ..., R_m)$. Sometimes have to be R = 1. - ▶ level= $(r_1, ..., r_1, r_2, ..., r_2, ..., r_k, ..., r_m)$. For example, level=(2,2,2,3,3,3,3) or level=(2,2,2,2,3,3,3,3). - ▶ minimum possible run size $n \Longrightarrow$ minimum possible run size vector $n = (n_1, n_2, ..., n_m) \Longleftrightarrow$ maximum possible $p = (p_1, p_2, ..., p_m)$. - ▶ Get $(OA_1, OA_2, ..., OA_m)$, then cross them together to get the (asymmetric) product design OA. ## Maximum Possible p Table Problem: in each symmetric group, given r, k, R, how to get the maximum possible p? For r=2: For r=3: Notice: For r=2, it might be not compatible for some given R. FYI, for (2,2,2,2) and R=3, we can only assign 1 design generator 3=12, then factor 4 will be the extra factor. ### An Example | No. | Α | В | C | D | |-----|---|---|---|---| | 1 | _ | + | _ | + | | 2 | + | + | + | + | | 3 | _ | _ | + | + | | 4 | + | _ | _ | + | | 5 | _ | + | _ | _ | | 6 | + | + | _ | _ | | 7 | _ | _ | _ | _ | | 8 | + | _ | _ | – | - For factors A, B, C, it is a 2^{3-1} design with design generator C = AB, and D is the extra factor. A, B, C, D makes a - ▶ $2^{3-1} \times 2$ product design. - ▶ It is a design with $R = min(R_1, R_2) = min(3, 1) = 1$. ## Orthogonal Array Construction Algorithm Inputs and outputs of the function codes: - Input: level vector, R. - ▶ Output: OA ($OA_1, OA_2, ..., OA_m$ are intermediate outputs). #### Algorithm: - (1) From R, generator all the possible resolution combination vector $(R_1, R_2, ..., R_m)$. - (2) In each symmetric group (given r, k, R_i), check the compatibility of the given level and resolution R_i . - If not, stop. - If yes, continue to step (2). - (3) In each symmetric group (given r, k, R_i), find the maximum possible p. - (4) In each symmetric design (given r, k, p_i), get all the possible design generators (d.g). ## Orthogonal Array Construction Algorithm (Continued) - (5) In each symmetric design (given r, k, d.g), from all the possible design generators, get the one which can achieves the minimum aberration. - ► For each possible design generators, get the wordlength. - Rank all the wordlengths through minimum aberration criterion. - ▶ Pick up the best wordlength, find its corresponding design generators $(d.g_o)$. - (6) In each symmetric design (given r, k, $d.g_o$), generate the OA_i . - (7) Cross all the OA_i s to get the product design OA. - Motivation - Fractional Factorial Design - Clear Effects - Minimum Aberration Criterion - Orthogonal Array Construction - Conclusion #### Conclusions - ▶ We introduce the basic ideas of fractional factorial design, design generators and minimum aberration criterion. - ► We generalize all the ideas from symmetric design to asymmetric (mixed-level) design. - ▶ We provide an algorithm to generate the orthogonal array based on the minimum aberration criterion. #### References - ▶ Box, G. E. P., Hunter, W.G, and Hunter, J.S. (1978), "Statistics for experimenters," New York: John Wiley & Sons. - Fries, A., and Hunter, W. G. (1980), "Minimum aberration 2^{k-p} designs," *Technometrics*, 22, 601-608. - ► Wu, C. F. Jeff. and Hamada, Micheal. S. (2009), "Experiments: planning, analysis, and optimization", (2nd edition), Wiley.