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Advantages of Conducting Designed Experiments in Digital
Marketing

» Availability of Data
» Ease of Creating Tests

» Automation of the Analysis



Challenges of Conducting Designed Experiments in Digital
Marketing

» Wide Range of Factor-Level Combinations, Including
Mixed-Level Designs

» Binary and continuous response variable
» Designs Must Be Small

> Designs Must Be Robust

» Must Isolate Effects

» Must Produce Results Fast

» Unsophisticated Users Robustness
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Fractional Factorial Design

Motivation: for economic reasons, full factorial designs are seldom
used in practice for large k (k > 7).

Fractional Factorial Design: a subset or fraction of full factorial
designs.

» “Optimal” fractions: are chosen according to the resolution
or minimum aberration criteria.

» Aliasing of effects: a price one must pay for choosing a
smaller design.

Design rk—P, where
> r: level of the factors.
» k: number of the factors.
> p: number of design generators.

» n=rk=P: run size.
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Balance and Orthogonality

Two key properties of the designs: balance and orthogonality.

» Balance: Each factor level appears in the same number of
runs.

» Orthogonality: Two factors are called orthogonal if all their
level combinations appear in the same number of runs. A
design is called orthogonal if all pairs of its factors are
orthogonal.



Design Generators

» 251 design: 16 runs, which is a % fraction of a 2° full
factorial design.

» Aliasing: D and ABC, i.e., main effect of D is aliased with
the A x B x C interaction.

» The aliasing is denoted by the design generator D = ABC,
x4 = x1 + x2 + x3 (mod 2).

> Since 2x4 = x1 + x2 + x3 + x4 = 0 (mod 2), we can get the
defining relation | = ABCD (I = 1234).

Number | Factors
Main effects 5 A,B,C,D,E
Two-factor 10 AB,AC,AD,AE,BC,....DE
Three-factor 10 ABC,ABD,ABE,BCD,...,CDE
Four-factor 5 ABCD,ABCE,ABDE,ACDE,BCDE
Five-factor 1 ABCDE
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Clear Main Effects and Two-factor Interaction Effects

Clear effect: a main effect or two-factor interaction is clear if
none of its aliases are main effects or two-factor interactions.

Number | Factors
Main effects | 5 A,B,C,D,E
Two-factor 4 AE,BE,CE,DE

From x; + x2 + x3 + x4 = 0 (mod 2), we can get:

» A= BCD,B = ACD, C = ABD, so all the main effects are
clear.

» AB=CD,AC = BD,AD = BC,...,AE = BCDE,BE =
ACDE, CE = ABDE, DE = ABCE, so only the two-factor
interactions including E are clear, all the others aliased with
other two-factor interactions.



More Than One Design Generators

Consider the 2672 design with design generators:
E =AB, F=ACD.

> We get the defining contrast subgroups:
| = ABE = ACDF = BCDEF.

» A;: the number of words of length / in its defining contrast
subgroup, wordlength pattern W = (As, As, ..., Ay).

» Resolution: the smallest r such that A, > 1, i.e., the length
of the shortest word in the defining contrast subgroup.

» The above design, resolution R =3 and W = (1,1,1,0,0,...).
» Maximum Resolution Criterion: Box and Hunter (1961).
» Resolution Il design, some main effects are not clear.

» Resolution IV design, main effects are clear, those with the
largest number of clear two-factor interactions are the best.

» Resolution V design, two-factor interactions are clear.
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Minimum Aberration Criterion

» Question: for the same rk—P designs di and d> with different
design generators, which one is better?

» Consider the following two 2”2 designs:
di: | = 4567 = 12346 = 12357,
dr: | = 1236 = 1457 = 234567.

» Fries and Hunter (1980): For any two 2K~P designs d; and db,
let r be the smallest integer such that A,(d1) # Ar(d2). Then
di is said to have less aberration than d; if A,(d1) < A.(d2).
If there is no design with less aberration than dq, then d; has
minimum aberration.

» For the above d; and d», we have wordlength patterns:
W(d1) =(0,1,2,0,0),
W(dz) = (0,2,0,1,0),
so di is better than d>.



Maximum Number of Clear Effects Criterion

» Consider the following two 2°~* designs:
di: 6 =123,7 =124,8 = 125,9 = 1345,
dy: 6 =123,7 =124,8 = 134,9 = 2345.
di: | = 1236 = 1247 = 1258 = 3467 = 3568 = 4578,
dy: | = 1236 = 1247 = 1348 = 3467 = 2468 = 2378 = 1678.
» For the above d; and db, we have:
Asz(di) = As(d2) = 0,
A4(d1) =6< A4(d2) =17,
so di is better than d> from minimum aberration criterion.
» While all the 9 main effects in di and d> are clear, d> has 15
clear two-factor interactions but d; has only 8, so one would
judge that db is better than dj.



Experiments at Mixed Levels

» When r =3, Ax B: AB,AB? Ax B x C:
ABC,ABC? AB?C,AB?C?.

» Consider a 2371 x 33! (asymmetric) product design:
di: C = AB for the two-level factors A, B, C; | = ABC.
d>: D = EF for the three-level factors D, E, F; | = DEF?.

» Type 1: find 3 aliasing relations A1, Ay, Az of the two-level
factors A, B, C, from C = AB:

Ar: A= BC
Ay B=AC
As: C = AB

» Type 2: find 4 aliasing relations By, B>, Bz, By of the
three-level factors D, E, F, from D = EF:
By: D = DE%F = EF?
B,: E = DF? = DE?F?
Bs: F = DE = DEF
Ba: DE? = DF = EF.



Experiments at Mixed Levels (Continued)

> Type 3: find 12 aliasing relations C; to Ci» from Type 1 and
Type 2 aliasing relations:
C1 (from A; and By):
AD = ADE?F = AEF? = BCD = BCDE? = BCDEF?.
G (from A; and By):
AE = ADF? = ADE?F? = BCE = BCDF? = BCDE?F?.
Cs: AF = ADE = ADEF = BCF = BCDE = BCDEF.
Cs: ADE? = ADF = AEF = BCDE? = BCDF = BCEF.
Cs: BD = BDE?F = BEF? = ACD = ACDE?F = ACEF?.
Cs: BE = BDF? = BDE?F? = ACE = ACDF? = ACDE?F?.
Cy: BF = BDE = BDEF = ACF = ACDE = ACDEF.
Cg: BDE? = BDF = BEF = ACDE? = ACDF = ACEF.
Co: CD = CDE?F = CEF? = ABD = ABDE?*F = ABEF?.
Cio:
CE = CDF? = CDE?F? = ABE = ABDF?F = ABDE?F?.
Ci1: CF = CDE = CDEF = ABF = ABDE = ABDEF.
Ci»: CDE? = CDF = CEF = ABDE? = ABDF = ABEF.
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Orthogonal Array Construction Problem

Problem: given factors vector, R, how to construct the orthogonal
array (OA) (design matrix) that has the minimum possible run size

n?
>

>

R=3 or R=4 for symmetric design.

For asymmetric design, we define R = min(Ry, R, ..., Rm).
Sometimes have to be R = 1.

level=(r1, .., F1, 12y «cvy 12y oy Tky vy Fm). For example,
level=(2,2,2,3,3,3,3) or level=(2,2,2,2,3,3,3).

minimum possible run size n =

minimum possible run size vector n = (ny, na, ..., Ny) <=
maximum possible p = (p1, p2, ..., Pm)-

Get (OA1, OAy, ..., OAn), then cross them together to get the
(asymmetric) product design OA.



Maximum Possible p Table

Problem: in each symmetric group, given r, k, R, how to get the
maximum possible p?

For r=2:
k 3| 4 4|5 5 5|6 6 6 6
R 3/3(1) 43 4@1) 5|3 4 5 6
maxp|1] 1 1]2 1+ 1[3 2 2 1
For r=3:
k 3|4 4|5 5 5|6 6 6 6
R 33 3 4 5/3 45 6
maxp|1]2 1][2 2 1]3 3 2 1

Notice: For r = 2, it might be not compatible for some given R.
FYI, for (2,2,2,2) and R = 3, we can only assign 1 design
generator 3 = 12, then factor 4 will be the extra factor.



An Example

No.|A B C|D
1 |- + -+
2 |+ + +|+
3 |- — +|+
4 |+ - -]+
5 [ — + - |-
6 |+ + —|-
7 - - _| =
8 |+ - —|-

» For factors A, B, C, it is a 2371 design with design generator
C = AB, and D is the extra factor. A, B, C, D makes a

» 2371 x 2 product design.
» It is a design with R = min(R1, R2) = min(3,1) = 1.



Orthogonal Array Construction Algorithm

Inputs and outputs of the function codes:

> Input: level vector, R.

» Output: OA (OA;1, OAy, ..., OA,, are intermediate outputs).
Algorithm:
(1) From R, generator all the possible resolution combination
vector (R1, Rz, ..., Rm).
(2) In each symmetric group (given r, k, R;), check the
compatibility of the given level and resolution R;.

» If not, stop.

> If yes, continue to step (2).
(3) In each symmetric group (given r, k, R;), find the maximum
possible p.
(4) In each symmetric design (given r, k, p;), get all the possible
design generators (d.g).



Orthogonal Array Construction Algorithm (Continued)

(5) In each symmetric design (given r, k, d.g), from all the
possible design generators, get the one which can achieves the
minimum aberration.

» For each possible design generators, get the wordlength.

> Rank all the wordlengths through minimum aberration
criterion.

» Pick up the best wordlength, find its corresponding design
generators (d.go).

(6) In each symmetric design (given r, k, d.g5), generate the OA;.
(7) Cross all the OA;s to get the product design OA.
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Conclusions

» We introduce the basic ideas of fractional factorial design,
design generators and minimum aberration criterion.

> We generalize all the ideas from symmetric design to
asymmetric (mixed-level) design.

» We provide an algorithm to generate the orthogonal array
based on the minimum aberration criterion.
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