## Construction of Mixed-Level Orthogonal Arrays for Testing in Digital Marketing

Vladimir Brayman

Webtrends

October 19, 2012

## Advantages of Conducting Designed Experiments in Digital Marketing

- Availability of Data
- Ease of Creating Tests
- Automation of the Analysis

# Challenges of Conducting Designed Experiments in Digital Marketing

- Wide Range of Factor-Level Combinations, Including Mixed-Level Designs
- ▶ Binary and continuous response variable
- Designs Must Be Small
- Designs Must Be Robust
- Must Isolate Effects
- Must Produce Results Fast
- Unsophisticated Users Robustness

- Motivation
- Fractional Factorial Design
- Clear Effects
- Minimum Aberration Criterion
- Orthogonal Array Construction
- Conclusion

## Fractional Factorial Design

Motivation: for economic reasons, full factorial designs are seldom used in practice for large k ( $k \ge 7$ ).

**Fractional Factorial Design**: a subset or fraction of full factorial designs.

- "Optimal" fractions: are chosen according to the resolution or minimum aberration criteria.
- Aliasing of effects: a price one must pay for choosing a smaller design.

Design  $r^{k-p}$ , where

- r: level of the factors.
- k: number of the factors.
- p: number of design generators.
- $ightharpoonup n = r^{k-p}$ : run size.

## An Example

| No. | Α | В | C | D | Ε |
|-----|---|---|---|---|---|
| 1   | _ | + | + | _ | _ |
| 2   | + | + | + | + | _ |
| 3   | _ | _ | + | + | _ |
| 4   | + | _ | + | _ | _ |
| 5   | _ | + | _ | + | _ |
| 6   | + | + | _ | _ | _ |
| 7   | _ | _ | _ | _ | _ |
| 8   | + | _ | _ | + | _ |
| 9   | _ | + | + | _ | + |
| 10  | + | + | + | + | + |
| 11  | _ | _ | + | + | + |
| 12  | + | _ | + | _ | + |
| 13  | — | + | _ | + | + |
| 14  | + | + | _ | _ | + |
| 15  | _ | _ | _ | _ | + |
| 16  | + | _ | _ | + | + |

## Balance and Orthogonality

Two key properties of the designs: **balance** and **orthogonality**.

- Balance: Each factor level appears in the same number of runs.
- Orthogonality: Two factors are called orthogonal if all their level combinations appear in the same number of runs. A design is called orthogonal if all pairs of its factors are orthogonal.

### **Design Generators**

- ▶  $2^{5-1}$  design: 16 runs, which is a  $\frac{1}{2}$  fraction of a  $2^5$  full factorial design.
- ▶ Aliasing: D and ABC, i.e., main effect of D is aliased with the  $A \times B \times C$  interaction.
- ► The aliasing is denoted by the **design generator** D = ABC,  $x_4 = x_1 + x_2 + x_3 \pmod{2}$ .
- Since  $2x_4 = x_1 + x_2 + x_3 + x_4 = 0 \pmod{2}$ , we can get the **defining relation**  $I = ABCD \ (I = 1234)$ .

|              | Number | Factors                  |
|--------------|--------|--------------------------|
| Main effects | 5      | A,B,C,D,E                |
| Two-factor   | 10     | AB,AC,AD,AE,BC,,DE       |
| Three-factor | 10     | ABC,ABD,ABE,BCD,,CDE     |
| Four-factor  | 5      | ABCD,ABCE,ABDE,ACDE,BCDE |
| Five-factor  | 1      | ABCDE                    |

- Motivation
- Fractional Factorial Design
- Clear Effects
- Minimum Aberration Criterion
- Orthogonal Array Construction
- Conclusion

#### Clear Main Effects and Two-factor Interaction Effects

**Clear effect**: a main effect or two-factor interaction is clear if none of its aliases are main effects or two-factor interactions.

|              | Number | Factors     |  |
|--------------|--------|-------------|--|
| Main effects | 5      | A,B,C,D,E   |  |
| Two-factor   | 4      | AE,BE,CE,DE |  |

From  $x_1 + x_2 + x_3 + x_4 = 0 \pmod{2}$ , we can get:

- ▶ A = BCD, B = ACD, C = ABD, so all the main effects are clear.
- ► AB = CD, AC = BD, AD = BC, ..., AE = BCDE, BE = ACDE, CE = ABDE, DE = ABCE, so only the two-factor interactions including E are clear, all the others aliased with other two-factor interactions.

## More Than One Design Generators

Consider the  $2^{6-2}$  design with design generators: E = AB, F = ACD.

- ► We get the **defining contrast subgroups**: I = ABE = ACDF = BCDEF.
- ▶  $A_i$ : the number of words of length i in its defining contrast subgroup, wordlength pattern  $W = (A_3, A_4, ..., A_k)$ .
- ▶ **Resolution**: the smallest r such that  $A_r \ge 1$ , i.e., the length of the shortest word in the defining contrast subgroup.
- ▶ The above design, resolution R = 3 and W = (1, 1, 1, 0, 0, ...).
- ▶ Maximum Resolution Criterion: Box and Hunter (1961).
- Resolution III design, some main effects are not clear.
- Resolution IV design, main effects are clear, those with the largest number of clear two-factor interactions are the best.
- Resolution V design, two-factor interactions are clear.



- Motivation
- Fractional Factorial Design
- Clear Effects
- Minimum Aberration Criterion
- Orthogonal Array
- Conclusion

#### Minimum Aberration Criterion

- ▶ Question: for the same  $r^{k-p}$  designs  $d_1$  and  $d_2$  with different design generators, which one is better?
- ► Consider the following two 2<sup>7-2</sup> designs:

```
d_1: I = 4567 = 12346 = 12357, d_2: I = 1236 = 1457 = 234567.
```

- Fries and Hunter (1980): For any two  $2^{k-p}$  designs  $d_1$  and  $d_2$ , let r be the smallest integer such that  $A_r(d_1) \neq A_r(d_2)$ . Then  $d_1$  is said to have **less aberration** than  $d_2$  if  $A_r(d_1) < A_r(d_2)$ . If there is no design with less aberration than  $d_1$ , then  $d_1$  has **minimum aberration**.
- For the above  $d_1$  and  $d_2$ , we have wordlength patterns:  $W(d_1) = (0, 1, 2, 0, 0)$ ,  $W(d_2) = (0, 2, 0, 1, 0)$ , so  $d_1$  is better than  $d_2$ .

#### Maximum Number of Clear Effects Criterion

► Consider the following two 2<sup>9-4</sup> designs:

$$d_1$$
: 6 = 123,7 = 124,8 = 125,9 = 1345,  
 $d_2$ : 6 = 123,7 = 124,8 = 134,9 = 2345.  
 $d_1$ :  $I = 1236 = 1247 = 1258 = 3467 = 3568 = 4578,$   
 $d_2$ :  $I = 1236 = 1247 = 1348 = 3467 = 2468 = 2378 = 1678.$ 

▶ For the above  $d_1$  and  $d_2$ , we have:

$$A_3(d_1) = A_3(d_2) = 0$$
,  
 $A_4(d_1) = 6 < A_4(d_2) = 7$ ,  
so  $d_1$  is better than  $d_2$  from minimum aberration criterion.

▶ While all the 9 main effects in  $d_1$  and  $d_2$  are clear,  $d_2$  has 15 clear two-factor interactions but  $d_1$  has only 8, so one would judge that  $d_2$  is better than  $d_1$ .

## Experiments at Mixed Levels

- ▶ When r = 3,  $A \times B$ : AB,  $AB^2$ ,  $A \times B \times C$ : ABC,  $ABC^2$ ,  $AB^2C$ ,  $AB^2C^2$ .
- Consider a  $2^{3-1} \times 3^{3-1}$  (asymmetric) **product** design:  $d_1$ : C = AB for the two-level factors A, B, C; I = ABC.  $d_2$ : D = EF for the three-level factors D, E, F;  $I = DEF^2$ .
- ▶ Type 1: find 3 aliasing relations  $A_1$ ,  $A_2$ ,  $A_3$  of the two-level factors A, B, C, from C = AB:

$$A_1$$
:  $A = BC$   
 $A_2$ :  $B = AC$   
 $A_3$ :  $C = AB$ 

▶ Type 2: find 4 aliasing relations  $B_1$ ,  $B_2$ ,  $B_3$ ,  $B_4$  of the three-level factors D, E, F, from D = EF:

$$B_1$$
:  $D = DE^2F = EF^2$   
 $B_2$ :  $E = DF^2 = DE^2F^2$   
 $B_3$ :  $F = DE = DEF$   
 $B_4$ :  $DE^2 = DF = EF$ .

## Experiments at Mixed Levels (Continued)

Type 2 aliasing relations:  $C_1$  (from  $A_1$  and  $B_1$ ):  $AD = ADE^2F = AEF^2 = BCD = BCDE^2 = BCDEF^2$ .  $C_2$  (from  $A_1$  and  $B_2$ ):  $AE = ADF^2 = ADE^2F^2 = BCE = BCDF^2 = BCDE^2F^2$ .  $C_3$ : AF = ADE = ADEF = BCF = BCDE = BCDEF.  $C_{\Delta}$ :  $ADE^2 = ADF = AEF = BCDE^2 = BCDF = BCEF$ .  $C_5$ :  $BD = BDE^2F = BEF^2 = ACD = ACDE^2F = ACEF^2$ .  $C_6$ :  $BE = BDF^2 = BDE^2F^2 = ACE = ACDF^2 = ACDE^2F^2$ .  $C_7$ : BF = BDE = BDEF = ACF = ACDE = ACDEF.  $C_8$ :  $BDE^2 = BDF = BEF = ACDE^2 = ACDF = ACEF$ .  $C_0$ :  $CD = CDE^2F = CEF^2 = ABD = ABDE^2F = ABEF^2$ .  $C_{10}$ :  $CE = CDF^2 = CDE^2F^2 = ABE = ABDF^2F = ABDE^2F^2$ .  $C_{11}$ : CF = CDE = CDEF = ABF = ABDE = ABDEF.  $C_{12}$ :  $CDE^2 = CDF = CEF = ABDE^2 = ABDF = ABEF$ .

▶ Type 3: find 12 aliasing relations  $C_1$  to  $C_{12}$  from Type 1 and

- Motivation
- Fractional Factorial Design
- Clear Effects
- Minimum Aberration Criterion
- Orthogonal Array Construction
- Conclusion

## Orthogonal Array Construction Problem

Problem: given factors vector, R, how to construct the orthogonal array (OA) (design matrix) that has the minimum possible run size n?

- ightharpoonup R=3 or R=4 for symmetric design.
- For asymmetric design, we define  $R = min(R_1, R_2, ..., R_m)$ . Sometimes have to be R = 1.
- ▶ level= $(r_1, ..., r_1, r_2, ..., r_2, ..., r_k, ..., r_m)$ . For example, level=(2,2,2,3,3,3,3) or level=(2,2,2,2,3,3,3,3).
- ▶ minimum possible run size  $n \Longrightarrow$  minimum possible run size vector  $n = (n_1, n_2, ..., n_m) \Longleftrightarrow$  maximum possible  $p = (p_1, p_2, ..., p_m)$ .
- ▶ Get  $(OA_1, OA_2, ..., OA_m)$ , then cross them together to get the (asymmetric) product design OA.

## Maximum Possible p Table

Problem: in each symmetric group, given r, k, R, how to get the maximum possible p?

For r=2:

For r=3:

Notice: For r=2, it might be not compatible for some given R. FYI, for (2,2,2,2) and R=3, we can only assign 1 design generator 3=12, then factor 4 will be the extra factor.

### An Example

| No. | Α | В | C | D |
|-----|---|---|---|---|
| 1   | _ | + | _ | + |
| 2   | + | + | + | + |
| 3   | _ | _ | + | + |
| 4   | + | _ | _ | + |
| 5   | _ | + | _ | _ |
| 6   | + | + | _ | _ |
| 7   | _ | _ | _ | _ |
| 8   | + | _ | _ | – |

- For factors A, B, C, it is a  $2^{3-1}$  design with design generator C = AB, and D is the extra factor. A, B, C, D makes a
- ▶  $2^{3-1} \times 2$  product design.
- ▶ It is a design with  $R = min(R_1, R_2) = min(3, 1) = 1$ .

## Orthogonal Array Construction Algorithm

Inputs and outputs of the function codes:

- Input: level vector, R.
- ▶ Output: OA ( $OA_1, OA_2, ..., OA_m$  are intermediate outputs).

#### Algorithm:

- (1) From R, generator all the possible resolution combination vector  $(R_1, R_2, ..., R_m)$ .
- (2) In each symmetric group (given r, k,  $R_i$ ), check the compatibility of the given level and resolution  $R_i$ .
  - If not, stop.
  - If yes, continue to step (2).
- (3) In each symmetric group (given r, k,  $R_i$ ), find the maximum possible p.
- (4) In each symmetric design (given r, k,  $p_i$ ), get all the possible design generators (d.g).

## Orthogonal Array Construction Algorithm (Continued)

- (5) In each symmetric design (given r, k, d.g), from all the possible design generators, get the one which can achieves the minimum aberration.
  - ► For each possible design generators, get the wordlength.
  - Rank all the wordlengths through minimum aberration criterion.
  - ▶ Pick up the best wordlength, find its corresponding design generators  $(d.g_o)$ .
- (6) In each symmetric design (given r, k,  $d.g_o$ ), generate the  $OA_i$ .
- (7) Cross all the  $OA_i$ s to get the product design OA.

- Motivation
- Fractional Factorial Design
- Clear Effects
- Minimum Aberration Criterion
- Orthogonal Array Construction
- Conclusion

#### Conclusions

- ▶ We introduce the basic ideas of fractional factorial design, design generators and minimum aberration criterion.
- ► We generalize all the ideas from symmetric design to asymmetric (mixed-level) design.
- ▶ We provide an algorithm to generate the orthogonal array based on the minimum aberration criterion.

#### References

- ▶ Box, G. E. P., Hunter, W.G, and Hunter, J.S. (1978), "Statistics for experimenters," New York: John Wiley & Sons.
- Fries, A., and Hunter, W. G. (1980), "Minimum aberration  $2^{k-p}$  designs," *Technometrics*, 22, 601-608.
- ► Wu, C. F. Jeff. and Hamada, Micheal. S. (2009), "Experiments: planning, analysis, and optimization", (2nd edition), Wiley.