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ENZYME KINETICS
In a typical enzyme kinetics reaction enzymes bind substrates
and turn them into products:

S + E ←→ ES → E + P,

whereS,E andP denote substrate, enzyme and product. The
reaction rate is represented by the standard Michaelis-Menten
model

v =
V [S]

Km + [S]

where[S] is the concentration of the substrate andV andKm

are the model parameters:
• V denotes the maximum velocity of the enzyme,

• Km is the value of[S] at which half of the maximum velocityV is reached.

Figure 1:Michaelis-Menten Model for enzyme kinetics

ENZYME KINETICS WITH INHIBITION

• Relevant when Drug-Drug Interaction is possible.

• Co-administration of a drug with an inhibitor of the en-
zyme that metabolizes it, can lead to a reduction in the
metabolism of a substrate and potentially cause an adverse
drug reaction as a result of the raised plasma concentration
of the drug.

• There are several types of inhibition. For example:

Competitive Inhibition

EI
l Kic

S + E ←→ ES −→ E + P.

+
I

Non-Competitive Inhibition

EIS −→ EI + P
l Kiu

S + E ←→ ES −→ E + P.
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Mixed Inhibition
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ENZYME KINETICS WITH COMPETITIVE INHIBITION

Inhibitor and substrate binding are mutually exclusive. The
velocity equation is:

v =
V [S]

Km

(
1 +

[I ]

Kic

)
+ [S]

whereKic is the inhibition constant.

Figure 2:Velocity of the competitive inhibition enzyme kinetics



DESIGN PROBLEM

• Efficient estimation of all the model parameters

NOTATION

Design: probability measure on a finite number of pointsxi,

ξ =

{
x1 . . . xs
w1 . . . ws

}
,

s∑

i=1

wj = 1, wi > 0

Statistical Model:

yi = η(xi,ϑ) + εi, εi ∼
iid
N (0, σ2),

wherexi are the support points of designξ andϑ denotes a
p-dimensional vector of parameters.

D-OPTIMUM DESIGN - COMPETITIVE KINETICS

D-optimum designξ⋆D maximizes the determinant of the in-
formation matrixM at a prior value of the parameter vector
ϑ, that is

ξ⋆D = max
ξ∈Ξ

detM(ξ,ϑ0)

Here we have (Bogacka et al, 2011)

xi = ([S]i, [I ]i), [S]min ≤ [S]i ≤ [S]max, [I ]min ≤ [I ]i ≤ [I ]max.

• D-optimum design form:

ξ⋆D =

{
([S]max, [I ]min) ([S]2, [I ]min) ([S]3, [I ]3))

1
3

1
3

1
3

}

where[S]2, [S]3, [I ]3 are functions ofϑ = (V,Km,Kic),

[S]2 = max

{
[S]min,

[S]maxKm(Kic + [I ]min)

2KmKic + 2Km[I ]min + [S]maxKic

}

[S]3 = max

{
[S]min, min

{
Km(Kic + [I ]max)

Kic
, [S]max

}}

[I ]3 = min

{
2Km[I ]min + [S]maxKic +KmKic

Km
, [I ]max

}

• For the prior parameter values(V 0, K0
m, K

0
ic) = (7.30, 4.39, 2.58) and

0 ≤ [S]i ≤ 60, 0 ≤ [I ]i ≤ 30, we obtain

ξ⋆D =

{
(30, 0) (3.39, 0) (30, 20.24)

1
3

1
3

1
3

}

PARAMETER SENSITIVITIES

Figure 3:Derivatives of the model function with respect to the parameters are informative
for finding optimum designs: regions of their extrema indicate high variability of model
prediction.

EQUIVALENCE THEOREM AND DESIGN POINTS

Figure 4:The maxima of variance function are at the optimum design support points, the
maxima are equal to the number of the model parameters.



COST SAVINGS
THE OPTIMALLY DESIGNED EXPERIMENT

Figure 5:Competitive inhibition interaction between dextrometorphan, which is a substrate
for the enzyme Cytochrome P450, 2D6, and an inhibitor of the enzyme, sertraline. The
new observations (blue) and the old ones from the “rich” design (red) are shown at the
picture, together with the model fitted to the old data.

The D-efficiency of the rich design compared to the opti-
mum design is 18.21%; the theory says that approximately
the same accuracy of parameter estimation can be obtained
with 21 (instead of 120) observations now split equally be-
tween the three D-optimum support points, making 7 obser-
vations per point.

Table 1: Parameter estimates and associated standard errors from the “rich" data set and
from observations coming from the D-optimum design.

Rich data set (n = 120) D-optimum (n = 21)
Parameter Estimate Standard errorEstimate Standard error

V 7.298 0.113 7.158 0.109
Km 4.386 0.231 4.153 0.233
Kic 2.582 0.144 2.089 0.127

DESIGN ROBUSTNESS
ADVANTAGES OF THE ANALYTICAL SOLUTIONS

• Optimum designs for any set of parameter values can be
quickly calculated and their properties easily examined.

The “saturation” conditions for[S]3 and for [I ]3 come from
the analytical forms and they are

Kic ≥
KmImax

Smax −Km
for [S]3, Kic ≥

Imax − 2Imin

(Smax +Km)Km
for [I ]3.

•We can examine the properties of the designs’ efficiency.

Deff(ξ) =

[
det

(
M(ξ,ϑ0)

)

det
(
M(ξ⋆D,ϑ

0)
)
]1/p

.

The implication for design is clear. Prior parameter values
should be chosen for the locally optimum design that are to-
ward the upper range of those thought plausible.



TWO COMPETING MODELS

NON-COMPETITIVE INHIBITION

• Non-competitive inhibitors have identical affinities forE
andES, that isKic = Kiu

The velocity equation is:

v =
V [S]

(Km + [S])

(
1 +

[I ]

Kic

)

whereKic is the inhibition constant.

MIXED INHIBITION

•Mixed-type inhibitors bind to bothE andES, but their
affinities for these two forms of enzyme are different, that
isKic 6= Kiu.

The velocity equation is:

v =
V [S]

Km

(
1 +

[I ]

Kic

)
+ [S]

(
1 +

[I ]

Kiu

)

whereKiu is a dissociation constant.

Figure 6:Two surfaces representing the enzyme kinetics: which is the“true” one? Non-
competitive (left) or mixed (right)?

DESIGN PROBLEM

• Find optimum design for efficient discrimination between
the models

We reparametrize the models so that the discrimination is
achieved by testing equality of two parameters.

• Let θ1 = 1/Kic andθ2 = 1/Kiu. Then the mixed model
becomes

v =
V [S]

Km (1 + θ1[I ]) + [S] (1 + θ2[I ])

• Reparameterize:θ1 = θ + δ andθ2 = θ − δ, to obtain

v =
V [S]

(Km + [S]) (1 + θ[I ]) + δ[I ] (Km − [S])
(⋆)

• This model reduces to a non-competitive model whenδ =
0, equivalent toKic = Kiu.

T-optimality: High power for testing

H0 : δ = 0

H1 : δ = δ0 whereδ0 6= 0

Ds-optimality: Precise estimation ofδ

In linear models, whens = 1 (one parameter of interest)Ds

andT -optimality criteria are equivalent, i.e., give the same
designs. Do the designs differ when models are non-linear?



T-OPTIMUM DESIGNS

•Maximize power of the test that model 1 is true.

• The criterion function is:

∆(ξ, ψ0
1) =

∫

X

{
η1(x, ψ

0
1)− η2(x, ψ̂2(ξ))

}2

dξ(x),

where

ψ̂2(ξ) = arg
ψ2

min

∫

X

{
η1(x, ψ

0
1)− η2(x, ψ2)

}2
dξ(x).

• Hereψ1 = (V,Km, θ, δ) andψ2 = (V,Km, θ), that isη1 is
as in (⋆); η2 as well, but withδ = 0.

Ds-OPTIMUM DESIGNS

Modelη1 is linearized with respect to the parametersψ1. Vec-
tor ψ1 and the information matrix are partitioned as follows

ψ1 = (ψ, δ), whereψ = (V,Km, θ)

and

M(ξ) =

(
M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

)

Then, the Ds-optimum design forδ maximizes the determi-
nant:

|M22(ξ)−M21(ξ)M
−1
11 (ξ)M

T
21(ξ)| = |M(ξ)|/|M11(ξ)|.

T-optimality does not involve any linearization. For nonlinear
modelsD1 and T-optimum designs are not in general identi-
cal. This arises because theD1-optimality criterion is used
for discriminating between models that are linearized with
respect toψ1 at (ψ0, 0), while the T-optimality criterion is ap-
plied to the original model and depends on the nominal values
(ψ0, δ0).

RESULTS (Atkinson and Bogacka, 2012)

Here we find

• T-optimum designs when the full non-linear model is true
with parameters(ψ0, δ0)

• Ds-optimum designs when the prior is(ψ0, 0)

• Ds(T)-optimum designs when the prior is(ψ̂(ξ⋆), 0), where
ξ⋆ denotes the T-optimum design.

• D-optimum design forψ1.

All designs have the form

ξ⋆ =

{
([S]max, [I ]min) ([S]2, [I ]min) ([S]max, [I ]3) ([S]4, [I ]4)

w1 w2 w3 w4

}

• The D-optimum design forψ1 has all the weights equal
and the support points have analytical solutions; they are
functions of the parameters.

• Other designs have to be found numerically.

• The weights of T- and Ds(T)-optimum designs (but not Ds)
follow the pattern of

w1 = 0.5− 2w2, w2 = w3, w4 = 0.5.

• The T-optimum design approaches theD1-optimum design
asδ0→ 0, c.f, Lopez-Fidalgo et al.(2008).



Figure 7:Enzyme kinetics: divergence ofT - andDs(T)-optimum designs asδ0 increases:
N, T -optimum designs;×, Ds(T)-optimum designs. Left-hand panel, design points:
upper triple,[S]4 and[S]2, equal for theDs(T)-optimum designs; lower triple,[I]3 and
[I]4, again equal for theDs(T)-optimum designs. Right-hand panel, design weights:
upper pair of curves,w4; central pair,w2 = w3; bottom pairw1.

EFFICIENCY

We define theT -efficiency of a designξ as follows

Teff(ξ) =
∆(ξ)

∆(ξ⋆T )
,

whereξ⋆T is theT -optimum design.

T-efficiency
Design δ = 0 0.1 0.2 0.3 0.45

D 72.12 71.77 71.21 70.43 68.78
T 100 100 100 100 100
Ds 100 99.47 97.89 95.17 88.01

Ds(T) 100 99.79 99.15 98.00 95.02
Rich 1.11 1.38 1.73 2.22 3.41

Table 2: Ds(T)-optimum designs are more efficient than Ds when compared with T-
optimum designs for non-linear models.

CONCLUSIONS

• Interestingly, all designs have the same border points.

• Ds(T)-optimum designs are more efficient than Ds when
compared with T-optimum designs for non-linear models.

• Linearization decreases the efficiency of the design.

• How much does it depend on the parameter non-linearity
of the model?

• Are there other values of the parameters to give even better
efficiencies than those of Ds(T)?

• Ds- and Ds(T)-optimum design “tend” to T-optimum de-
sign whenδ → 0.

•Ds-optimum designs are much easier to compute thanT -
optimum designs are.
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