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ENZYME KINETICS

In a typical enzyme Kkinetics reaction enzymes bind sulesrat
and turn them into products:

S+FE<+—FES— FE+P,

whereS, E andP denote substrate, enzyme and product. The
reaction rate is represented by the standard Michaelistdvien

model
V[S]

T Kyt [9)
where[S] is the concentration of the substrate andnd K,
are the model parameters:

(V)

e IV denotes the maximum velocity of the enzyme,

e K, is the value of S] at which half of the maximum velocity’ is reached.
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Figure 1:Michaelis-Menten Model for enzyme kinetics

ENZYME KINETICSWITH INHIBITION
e Relevant when Drug-Drug Interaction is possible.

e Co-administration of a drug with an inhibitor of the en-
zyme that metabolizes it, can lead to a reduction in the
metabolism of a substrate and potentially cause an adverse
drug reaction as a result of the raised plasma concentration
of the drug.

e There are several types of inhibition. For example:

ET
i Kic
Competitive Inhibition S + FE +— ES — E+ P.
+
I
EIS — EI+ P
Non-Competitive Inhibition S + F «— ES —FE+P
+
I
ET EIS — FEI+ P
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Mixed Inhibition S + F +— ES — E+P.
+ +
I I

ENZYME KINETICS WITH COMPETITIVE INHIBITION

Inhibitor and substrate binding are mutually exclusive.eTh
velocity equation is:

wherekKj;, is the inhibition constant.
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Figure 2:Velocity of the competitive inhibition enzyme kinetics



DESIGN PROBLEM

e Efficient estimation of all the model parameters

NOTATION
Design: probability measure on a finite number of points

) .. T - o .
5_{ww} > =1, >
Statistical Model:

ei ~ N(0,07),

1id
wherez; are the support points of desigrand¥ denotes a
p-dimensional vector of parameters.

vi = n(x;, ) + &,

D-OPTIMUM DESIGN - COMPETITIVE KINETICS

D-optimum desigrg;, maximizes the determinant of the in-
formation matrix)/ at a prior value of the parameter vector
9, that is

&p = maxdet M(€,9")
€=

Here we have (Bogacka et al, 2011)
X, = <[S]27 [I]z)a [S]min S [S]z S [S]maxa [I]min < [[]z < [I]max-

e D-optimum design form:

525: {([S]maxéa [[]m1n> ([S]Qaé[l]mm> ([5]3 []]3»}

where[S]y, [S]s, [I]3 are functions of) = (V, K,,,, K;.),

)
1
3

] = max {[S]mm, ST Fon (Ko + o) }

QKsz'c + 2Km[1]min + [S]maxKi

5 = s { (S, i { E2e ) g A

. 2Km I min T S maxKic + KmKic
[[]3 = mm{ [ ] [l]( ) [I]max}

e For the prior parameter valu¢g™®, K K?) = (7.30,4.39,2.58) and
0 <[S]; <60,0 < [I]; < 30, we obtain

. [(30,0) (3.39,0) (30, 20.24)
fD - { 1 1 1 }

3 3 3
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Figure 3:Derivatives of the model function with respect to the parterseare informative
for finding optimum designs: regions of their extrema intkdaigh variability of model
prediction.
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Figure 4: The maxima of variance function are at the optimum desigmpasrtipoints, the
maxima are equal to the number of the model parameters.



COST SAVINGS DESIGN ROBUSTNESS
THE OPTIMALLY DESIGNED EXPERIMENT ADVANTAGES OF THE ANALYTICAL SOLUTIONS

e Optimum designs for any set of parameter values can be
quickly calculated and their properties easily examined.

P - The “saturation” conditions fofS]; and for /|3 come from

Figure 5:Competitive inhibition interaction between dextrometwap, which is a substrate the analytlcal forms and they are

for the enzyme Cytochrome P450, 2D6, and an inhibitor of timyme, sertraline. The K, Lo Lnax — 210
new observations (blue) and the old ones from the “rich” gle¢red) are shown at the Kz‘c > K for [5]37 Kz‘c > g KK for []]3-
picture, together with the model fitted to the old data. max — £im ( max 1 m) m

The D-efficiency of the rich design compared to the opti-

mum design is 18.21%; the theory says that approximately o we can examine the properties of the designs’ efficiency.
the same accuracy of parameter estimation can be obtained

with 21 (instead of 120) observations now split equally be- 0 1/p
tween the three D-optimum support points, making 7 obser- Do) = det (M(g,ﬂ >)
vations per point. " det (M (&}, 97))

Table 1: Parameter estimates and associated standard errors feofridi' data set and
from observations coming from the D-optimum design.

Rich data set/{ = 120) D-optimum @ = 21)

Parameter Estimate Standard error Estimate Standard error
1% 7.298 0.113 7.158 0.109 T T B ”
K, 4.386 0.231 4.153 0.233 The implication for design is clear. Prior parameter values
K. 2.582 0.144 2.089 0.127 should be chosen for the locally optimum design that are to-

ward the upper range of those thought plausible.



TWO COMPETING MODELS

NON-COMPETITIVE INHIBITION

e Non-competitive inhibitors have identical affinities fér
andE S, that IsK;, = K,
The velocity equation is:
V1S]

(K +15)) (1 +- [[QC)

v =

wherekK;. is the inhibition constant.

MIXED INHIBITION

e Mixed-type inhibitors bind to both®’ and E'S, but their
affinities for these two forms of enzyme are different, that
IS Kic ‘T'é Kzu

The velocity equation is:
V1S]

o (14 50 ) + 181 (14 )

wherekj;, is a dissociation constant.

1V =

Figure 6: TWO surfaces representing the enzyme kinetics: which istthe” one? Non-
competitive (left) or mixed (right)?

DESIGN PROBLEM

e Find optimum design for efficient discrimination between
the models

We reparametrize the models so that the discrimination is
achieved by testing equality of two parameters.

elett) = 1/K;,. andf, = 1/K;,. Then the mixed model
becomes
V[S]
Ky, (14 04[1]) + [S] (1 + 0-1])

vV =

e Reparameterizel, = 0 + 0 andfd, = 6 — 9, to obtain
45

VS R ) A0 o (K=

e This model reduces to a non-competitive model when
0, equivalent tak;. = K,,.

T-optimality: High power for testing
H() :0=20
H,:6=24" wheres’ #0

Ds-optimality. Precise estimation of

In linear models, wher = 1 (one parameter of interest),
and T-optimality criteria are equivalent, i.e., give the same
designs. Do the designs differ when models are non-linear?



T-OPTIMUM DESIGNS

e Maximize power of the test that model 1 is true.
e The criterion function is:

A€ = [ {mla.vh) — i, )} de(a)

where

% —argmm/ {771 2, YY) — ma( %} dé(x

e Herey, = (V. K,,,,0,0) andyy, = (V, K,,,,0), that isn; is
as in {); n, as well, but withy = 0.

Ds-OPTIMUM DESIGNS

Modeln; is linearized with respect to the parameters Vec-
tor ¢, and the information matrix are partitioned as follows

,le — (¢7 5)7 Wherw — (Vv Kma 9)

M(€) = (M11(€) Mm(f))

and

Mo1(§) Maa(&)

Then, the [@-optimum design fop maximizes the determi-
nant:

‘M22(§) - M21<5>M1_11<5>M2T1<§>| - |M(f)‘/‘M11(f)‘

T-optimality does not involve any linearization. For nowdar
modelsD, and T-optimum designs are not in general identi-
cal. This arises because tlig-optimality criterion is used

for discriminating between models that are linearized with
respect ta); at(¢’, 0), while the T-optimality criterion is ap-
plied to the original model and depends on the nominal values

(47, 8%).

RESULTS (Atkinson and Bogacka, 2012)

Here we find

e T-optimum designs when the full non-linear model is true
with parameters:", 6°)

e Ds-optimum designs when the prior (g, 0)

e Dg(T)-optimum designs when the prior(’r@(ﬁ*),
¢* denotes the T-optimum design.

0), where

e D-optimum design fou);.

All designs have the form

e — {([S]max, min) (]2, T lmin) ([S]max, [1]3) (1S]a, U]4>}

wq Wwa w3 Wy

e The D-optimum design fot); has all the weights equal
and the support points have analytical solutions; they are
functions of the parameters.

e Other designs have to be found numerically.

e The weights of T- and E(T)-optimum designs (but not4)
follow the pattern of

w1 = 0.5 — 21U2, W9 = W3, Wy — 0.5.

e The T-optimum design approaches theoptimum design
asd’ — 0, c.f, Lopez-Fidalgo et al.(2008).
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Figure 7:Enzyme kinetics: divergence @ and D,(T)-optimum designs a8’ increases:

A, T-optimum designsx, D,(T)-optimum designs. Left-hand panel, design points:
upper triple,[S], and[S],, equal for theD(T)-optimum designs; lower tripleé/]; and
[I]4, again equal for theD,(T)-optimum designs. Right-hand panel, design weights:
upper pair of curvesy,; central pairw, = ws; bottom pairw;.

EFFICIENCY
We define th&-efficiency of a desigi as follows

Tefr<€> — AA((E;) ;

where¢ is theT-optimum design.

T-efficiency

Design6 =0 0.1 0.2 0.3 0.45
D [72.12 71.77 71.21 70.43 68.Y8
T 100 100 100 100 100
Ds 100 99.47 97.89 95.17 88.01
Ds(T) | 100 99.79 99.15 98.00 95.02
Rich | 1.11 1.38 1.73 222 3.4l

Table 2: Dg(T)-optimum designs are more efficient tharg When compared with T-
optimum designs for non-linear models.

CONCLUSIONS

e Interestingly, all designs have the same border points.

e Dg(T)-optimum designs are more efficient thag ®When
compared with T-optimum designs for non-linear models.

e Linearization decreases the efficiency of the design.

e How much does it depend on the parameter non-linearity
of the model?

e Are there other values of the parameters to give even bette
efficiencies than those ofd0rI)?

e Ds- and Dx(T)-optimum design “tend” to T-optimum de-
sign wheny — 0.

e D optimum designs are much easier to compute than
optimum designs are.
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