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Statistics and Optimal design of experiments

The main goal of statistics is to gain information from collected
data

Design of experiments concerns the way of data collection

↪→ An optimal/efficient design can reduce the sample size and
cost needed for achieving a specified precision of estimation, or
can improve the precision for a given sample size
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Exact and approximate designs

Exact design ξn for sample size n:

ξn =

{
x1 x2 . . . xm

n1/n n2/n . . . nm/n

}
; ni integers,

m∑
i=1

ni = n

Approximate design ξ:

ξ =

{
x1 x2 . . . xm
ω1 ω2 . . . ωm

}
; ωi > 0,

m∑
i=1

ωi = 1

Note: To run an approximate design, some rounding procedure
is required
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Optimality criteria

Suppose interest is in F (θ), a vector of functions of the model
parameters
The (asymptotic) covariance matrix of the MLE of F (θ) under
design ξ, Σξ(F ), can be written as

Σξ(F ) =
∂F (θ)

∂θT (Iξ)−
∂F (θ)

∂θ

where Iξ is the information matrix of the design ξ
Aim: Obtain precise estimates
↪→ Minimise Φ(Σξ(F )), an optimality criterion
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Optimality criteria

Example 1: A D-optimal design minimises the determinant of the
covariance matrix
↪→ minimises the volume of a confidence ellipsoid for F (θ)

Example 2: An A-optimal design minimises the trace of the
covariance matrix
↪→ minimises the sum of the variances of the elements of F (θ̂)
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Locally optimal designs

A large and popular class of optimality criteria are the Φp-criteria,
of which A- and D-optimality are special cases:

Φp(Σξ(F )) =

[
1
v

trace(Σξ(F ))p
]1/p

where 0 ≤ p <∞ and Σξ(F ) ∈ IRv×v

Problem: In many situations, Φp-optimal designs depend on the
unknown parameter vector θ
↪→ locally optimal designs
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Optimal multi-stage designs

Use a sequential strategy:

Suppose n0 observations are already available, from design ξn0 ,
and another n observations can be made
Estimate θ ↪→ θ̂0

Design problem: Find ξ such that the combined design
ξ̃ = n0/(n0 + n)ξn0 + n/(n0 + n)ξ minimises Φ(Σξ̃(F )) for θ̂0

Note: ξ̃ and thus ξ are approximate designs
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Aim of this project

Provide a fast, general, convenient, and easy to use approach to find
locally and multi-stage optimal designs
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Current algorithms

Three well-known algorithms are:
Vertex direction method (VDM; Fedorov, 1972)
Multiplicative algorithm (MA; Silvey, Titterington and Torsney,
1978)
Vertex exchange method (VEM; Böhning, 1986)

Yu (2011) combines “the best features” of these algorithms with a
nearest neighbour exchange step to improve speed
↪→ Cocktail algorithm
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Computing time comparison I

Model: Y = θ1e−θ2x + θ3e−θ4x + ε

Design space [0,3] discretised to X = {3i/N, i = 1, . . . ,N}

Computing time (in seconds) (Table 1 of Yu, 2011)
N = 20 N = 50 N = 100 N = 200 N = 500

MA 14.3 63.7 147 307 762
VEM 0.17 1.43 23.1 206 555

Cocktail 0.07 0.11 0.25 0.36 0.96

(VDM is omitted since it is known to be slower than VEM)
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Computing time comparison II

Y = θ1 + θ2r + θ3r2 + θ4s + θ5rs + ε

Design space [−1,1]× [0,1] discretised to
X = {(ri , sj ), ri = 2i/k − 1, i = 1, . . . , k , sj = j/k , j = 1, . . . , k}, N = k2

Computing time (in seconds) (Table 4 of Yu, 2011)
N = 202 N = 502 N = 1002 N = 2002

MA 25.2 993.8 aborted aborted
VEM 8.01 195.8 94.6 aborted

Cocktail 0.63 3.94 17.6 74.1
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Summary of current algorithms

All algorithms are relatively easy to implement
The Cocktail algorithm leads to dramatically improved speed,
sometimes by several orders of magnitude, relative to MA, VDM,
and VEM.
The Cocktail algorithm is restricted to D-optimal design for the
full parameter vector
Restricted to (one-stage) locally optimal designs
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Goal of the new algorithm

Any parameters (or functions thereof) can be of interest
Any optimality criterion: Φp-optimality (includes D-, A-, and
E-optimality)
One-stage and multi-stage
Convenient to use
Even faster
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Rationale

1. The existing algorithms typically seek “monotonic convergence”
↪→ May not be the fastest way to converge to the optimal weights

2. New idea: instead of seeking monotonic convergence, we derive
the optimal weights directly, which can be done by solving a system
of nonlinear equations
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Notations for the new algorithm

X = {x1, . . . , xN}, the set of all possible design points
S(t), the support after t th iteration
ξ∗S(t) , design with support S(t) and optimal weights
d(x , ξ∗S(t) ), sensitivity function of design ξ∗S(t)
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The new algorithm

Start with an initial design support, S(0). In the t th step:

Derive ξ∗S(t) using the Newton-Raphson method
Compute the sensitivity function d(xi , ξ

∗
S(t) ) for i = 1, . . . ,N

Select 1 ≤ imax ≤ N such that

d(ximax , ξ
∗
S(t) ) = max

i≤n≤N
d(xi , ξ

∗
S(t) )

Stop when d(ximax , ξ
∗
S(t) ) ≤ ε, ε > 0 very small, otherwise

S(t+1) = S(t)⋃{ximax}
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Convergence (I)

Theorem 1: For a multi-stage design, let Iξ0 be non-singular.

Then for any initial support S(0), the sequence of designs {ξ∗S(t) ; t ≥ 0}
converges to an optimal design minimising Φp(Σξ(F )) as t →∞,
provided the optimal weights are found in each updating step

For a one-stage design, the above result holds if Iξ
S(0)

is non-singular,
and if the Jacobian of F is square and of full rank
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Convergence (II)

Theorem 2: For a multi-stage design, let p be an integer and Iξ0 be
non-singular. For given support, Φp(Σξ(F )) is minimised (w.r.t the
weights) at any critical point in
Ω = {w = (w1, . . . ,wm−1)T : wi ≥ 0, w1 + . . .+ wm−1 ≤ 1} or its
boundary. In addition, the Hessian of Φp(Σξ(F )) is non-negative
definite.

↪→ Newton-Raphson method will converge provided the starting point
is “close enough” to the critical point. Since Ω is compact, we can
always find a critical point (given it exists) by using sufficiently many
starting values
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Example I

Set up

Consider model Y = θ1eθ2x + θ3eθ4x + ε. Let θ = (θ1, θ2, θ3, θ4) and
X = {3i/N, i = 1, . . . ,N}. Assume that θ = (1,−1,1,−2).

The same set up as that of Table 1 of Yu (2011)

Algorithms are coded using SAS IML and computed at a Dell laptop
(2.2GHz and 8Gb Ram)
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Example I

Computing time (in seconds) comparison I

Computing time (in seconds) for the D-optimal design for the full
parameter vector θ

N = 500 N = 1000 N = 5000 N = 10000
Cocktail 0.32 0.46 2.54 5.16

New algorithm 0.14 0.21 0.99 1.26
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Example I

Locally A- and D-optimal designs

Computing time (in seconds) under the new algorithm

D A
θ (θ1, θ3) (θ2, θ4) θ (θ1, θ3) (θ2, θ4)

N = 500 0.14 0.10 0.10 0.10 0.10 0.10
N = 1000 0.21 0.12 0.15 0.11 0.12 0.12
N = 5000 0.99 0.32 0.46 0.24 0.28 0.23

N = 10000 1.26 0.54 0.85 0.45 0.42 0.45
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Example I

Multi-stage A- and D-optimal designs

Suppose we have an initial design
ξ0 = {(0,0.25), (1,0.25), (2,0.25), (3,0.25)} with n0 = 40

Aim: Allocate the next 80 observations

Computing time (in seconds) under the new algorithm

D A
θ (θ1, θ3) (θ2, θ4) θ (θ1, θ3) (θ2, θ4)

N = 500 0.36 0.34 0.32 0.09 0.09 0.10
N = 1000 0.42 0.37 0.37 0.10 0.09 0.11
N = 5000 0.78 0.57 0.67 0.34 0.29 0.23

N = 10000 1.27 0.78 0.98 0.54 0.57 0.40
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Example II

Set up

Consider model Y = θ1 + θ2r + θ3r2 + θ4s + θ5rs + ε.
Let θ = (θ1, θ2, θ3, θ4, θ5) and
X = {(ri , sj ), ri = 2i/k − 1, i = 1, . . . , k , sj = j/k , j = 1, . . . , k}.

The same set up as that of table 4 of Yu (2011)

Algorithms are coded using SAS IML and computed at a Dell laptop
(2.2GHz and 8Gb Ram)
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Example II

Computing time (in seconds) comparison II

D-optimal design for the full parameter vector θ

N = 202 N = 502 N = 1002 N = 2002 N = 5002

Cocktail 0.20 0.82 2.30 8.68 53.69
new algorithm 0.15 0.24 0.51 1.66 11.03
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Example III

Set up

Consider multinomial logit model with 3 categories, and 3 variables:

Response Y = (Y1,Y2,Y3)T at experimental condition x with
Y1 + Y2 + Y3 = 1 and

πi (x) = P(Yi = 1|x) =
eg(x)T θi

1 + eg(x)T θ1 + eg(x)T θ2
, i = 1,2.

where g(x)T = (1, x1, x2, x3)
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Example III

Modification to algorithm (example III only)

Design space X = {(6i/k ,6j/k ,6l/k), i , j , l = 0,1, . . . , k}
↪→ The number of design points in X rapidly increases as k increases
(N ∝ k3)

Start with a coarse grid
Identify the best design based on the grid at that stage
For the next stage, a finer grid is restricted to neighbourhoods of
the best support points found at the current stage
Continue until a specified accuracy for the design points is
reached
Verify optimality through the equivalence theorem

30 / 45



Introduction Current algorithms New algorithm Examples Summary

Example III

Computing time (in seconds) example III

Locally optimal design Multi-stage optimal design
θ θ′ θ θ′

N D A D A D A D A
103 0.32 0.32 0.26 0.39 0.29 0.31 0.18 0.23
203 0.62 1.07 1.15 1.71 0.74 1.73 0.65 1.34
503 8.14 17.81 17.94 24.52 12.85 16.98 11.29 19.57

1003 54.38 86.92 101.13 169.57 71.73 68.14 71.09 114.64
2003 524.1 653.0 664.4 814.3 531.8 738.7 718.2 853.8

θT = (θT
1 , θ

T
2 ) where θ1 = (1,1,−1,2) and θ2 = (−1,2,1,−1).

θ′ = (θ11, θ12, θ13, θ21, θ22, θ23)
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Summary

The new algorithm is even faster than the Cocktail algorithm
More importantly, the new algorithm is more widely applicable:

Φp-optimality
Single- and Multi-stage designs
interest in functions of the parameters

Future work:
Extend algorithm to find Bayesian and (hopefully) Minimax designs
Compare its performance with further algorithms, e.g PSO
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Thank You!
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VDM

Starting with an initial design ξ(0) (uniform design over a set of
support points). Let ξ(t) be the design with the corresponding weight
vector ω(t). ξ(t+1) is updated through the following steps.

Select 1 ≤ imax ≤ N such that d(imax , ξ
(t)) = maxi≤n≤N d(i , ξ(t))

Stop when d(imax , ξ
(t)) ≤ m + ε, otherwise

ω
(t+1)
i =

{
(1− δ)ω

(t)
i , i 6= imax

(1− δ)ω
(t)
i + δ, i = imax

where δ = d(imax ,ξ
(t))/m−1

d(imax ,ξ(t))−1 .
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MA

Starting with an initial design ξ(0) (uniform design over a set of
support points). Let ξ(t) be the design with the corresponding weight
vector ω(t). ξ(t+1) is updated through the following steps.

Stop when d(imax , ξ
(t)) ≤ m + ε, otherwise

ω
(t+1)
i = ω

(t)
i d(i , ξ(t))/m, where m is the dimension of Iξ.
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VEM

VEM (vertex exchange method) is close to VDM but performs better.
Select imin and imax such that
d(imin, ξ

(t)) = min{d(i , ξ(t)) : w (t)
i > 0}, and

d(imax , ξ
(t)) = maxi≤n≤N d(i , ξ(t))

Stop when d(imax , ξ
(t)) ≤ m + ε, otherwise

Set ω(t+1) = VE(imax , imin, ω
(t)).
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Vertex exchanges (VE)

VE(j , k , ξ(t)) is to exchange the weight between xj and xk , where

ω
(t+1)
i =


ω

(t)
i , i 6= j , k
ω

(t)
i − δ, i = j
ω

(t)
i + δ, i = k

Here δ = min{ωj ,max{−ωk , δ
∗(j , k)}}

and

δ∗(j , k) =
d(k , ξ(t))− d(j , ξ(t))

2
(

d(j , ξ(t)) ∗ d(k , ξ(t))−
(

(f (xj )T I−1
ξ(t) f (xk )

)2
)
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Nearest neighbour exchanges (NNE)

Let i1, . . . , iq+1 be the elements of {i : ω
(t)
i > 0} where q + 1 is the

number of support points of ω(t). For each ij , j = 1, . . . ,q, let i∗j be any
index i ∈ {ij+1, . . . , iq+1} such that ||xi − xij || is minimized. Perform VE
between xij and xi∗j for j = 1, . . . ,q in turn, i.e.,

ω(t+j/q)=VE(ij ,ij∗ ,ξ
(t+(j−1)/q))
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Computing optimal weights

Initial weight ω(t)
0 for S(t) can be updated through the following

iteration:

(a) ω(t)
j = ω

(t)
j−1 − α

(
∂2Φp(Σξ0+ξ(g))

∂ωωT |
ω=ω

(t)
j−1

)−1
∂Φp(Σξ0+ξ(g))

∂ω |
ω=ω

(t)
j−1

(b) Check if there are non-positive components of ω(t)
j

(c) If answer of (b) is no, check whether ||∂Φp(Σξ0+ξ(g))
∂ω |

ω=ω
(t)
j
|| is less

than some pre-specified ε1. If yes, ω(t)
j holds the optimal weights.

If no, start the next iteration.
(d) If answer of (b) is yes, reduce α to α/2. Repeat (a) and (b) until α

reaches a pre-specified value. Remove the support point with
smallest weight, and repeat (a) and (b)
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Sensitivity function:

d(xi , ξ
∗
S(t) ) = Tr [

(
I(xi )− Iξ∗

S(t)

)(
Iξ0 + rIξ∗

S(t)

)−(∂F (θ)

∂θT

)T

(
Σξ∗

S(t)

)p−1
(
∂F (θ)

∂θT

)(
Iξ0 + rIξ∗

S(t)

)−
]

For D-optimality, p = 0.
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