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Introduction
Data collected from correlated processes arise in many diverse
application areas including studies in environmental and ecological
science and in both real and computer experiments. Often the main aim
of the study is to predict the process at unobserved points.

In this work, we illustrate a new approach for the selection of Bayesian
optimal designs using applications from both spatial statistics and
computer experiments.

A Motivating Example
Networks of monitoring stations are regularly used to collect data to
measure pollutant levels in water or air. Figure 1 shows such a network
in the Eastern USA for monitoring chemical deposition.
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Figure 1: Network of monitoring stations in the Eastern USA.

An important problem is to identify the best locations of stations across
the region of interest (Diggle and Lophaven, 2006; Zimmerman, 2006).
Usually, observations at geographically close stations are assumed to be
highly correlated, and this correlation helps to predict deposition levels
at unobserved locations.

Statistical model
We assume a Gaussian regression model

Y(x)|θ,σ2,φ, τ2 ∼ N(Xθ,σ2C(φ) + τ2I) (1)

where X is the model matrix, θ contains regression coefficients, C is a
correlation matrix from a stationary and isotropic correlation function
determined by decay parameter φ, and σ2, τ2 are the spatial and pure
error (nugget) terms respectively.

If a Bayesian approach is adopted, the model specification is completed
by assignment of prior distributions to the unknown parameters.

Bayesian optimal design
The aim of our experiments is to enable accurate prediction of the
response Y(x) at unobserved x. We adopt a decision theoretic approach
(Chaloner and Verdinelli, 1995) to find Bayesian optimal designs that
minimise the posterior predictive variance. To avoid the
computational burden usually associated with Bayesian designs we
have developed a new closed form approximation that allows quick
calculation of the variance.
The designs are found using the coordinate exchange algorithm (Meyer
and Nachtsheim, 1995), and illustrated with the following examples.

Example 1 - Optimal designs for spatial data
Here observations are assumed to follow model (1) with
I covariance function ρ(dij;φ) = exp(−φdij), where dij is the Euclidean

distance between points xi, xj ∈ [−1, 1]2

Iprior distributions θ|σ2 ∼ N(0,σ2I) , σ2 ∼ Inverse Gamma(3, 1) and
φ ∼ Uniform(0.1, 1)
Iν2 = τ2/σ2 is fixed at one of four values: 0, 0.5, 1, 2.5.
Optimal designs with n = 10 points are shown in Figure 2.
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Figure 2: Optimal designs and average correlation surfaces for known
ratio ν2 = τ2/σ2.

The filled contours in Figure 2 give the correlation between each point
of the design region and the centre of the design region, averaged
across the prior for φ; the minimum values of these correlations are 0.5,
0.34, 0.25 and 0.13 for ν2 = 0, 0.5, 1, 2.5 respectively.
Clearly, the optimal designs change with ν2 and the correlation
structure. Low values of ν2, which result in high correlation, give rise
to designs where points are spread across the design region. In
contrast, high values of ν2 (low correlation) produce designs with
points at the boundaries and corners of the design region. For ν2 = 2.5,
the design is similar to a standard optimal design for a regression
model with uncorrelated errors.

Example 2 - Computer experiments
Model (1) is commonly used to describe data from a deterministic
computer experiment. Our example uses data from a simple simulator of
a helical compression spring (Tudose and Jucan, 2007; Forrester et al.,
2008). The example has three variables and
Iρ(xi, xj;φ) =

∏3
k=1 exp(−φk|xik − xjk|) for xi, xj ∈ [−1, 1]3

Ipriors for θ, σ2 as in the first example
Figure 3 shows Bayesian optimal designs with n = 10 runs for two
different prior distributions
prior 1 : ν2=0, φ1 ∼ Unif(1, 3), φ2 ∼ Unif(3, 5), φ3 ' 0
prior 2 : ν2=0.5, φ1 ∼ Unif(1, 3), φ2 ∼ Unif(1, 3), φ3 = 0
These priors were obtained by analysing data from a maximin Latin
hypercube design (LHD) (Morris and Mitchell, 1995), also shown in
Figure 3.
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Figure 3: Bayesian optimal design ( ) and Latin hypercube designs ( )
for prior 1 (left) and prior 2 (right).

For prior 1, the Bayesian optimal design has similar space-filling
properties as the LHD (average intra-point distance of 1.43 vs 1.40) but
has 30% smaller average posterior predictive variance. For prior 2, where
there is little change in correlation with x3, the design points in the x3
dimension collapse onto the extremes (determined by the linear trend).
This second design has posterior predictive variance 18% lower than that
of the LHD.

Conclusions
We have investigated Bayesian optimal design for collecting correlated
data when the aim of the experiment is accurate prediction. The designs
we have studied are influenced by the degree of correlation, with higher
correlation leading to designs which are close to space-filling, and
provide lower prediction variance than LHDs.
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