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Background

- Matrix completion recover a matrix M € R“*% from incomplete
observations.

» Low-rank matrix:

(i) exact low-rank matrix: rank(M) < r;

(i) approximate low-rank matrix: ||M ||, < a and

rank(M) < r = || M|, < ay/rdids.

« Quantized matrix completion: observations and noise are
‘quantized’ and classical techniques can not guarantee the recovery
performance. [1]| gives the first result for a quantized case in which
the observations are —1 or 1.

« Applications: Netflix problem, network traffic, counting data.

» Recovery algorithms: solving a penalized nuclear norm
regularization optimization problem (convex optimization).

> Can we guarantee the recovery performance for
Poisson observations?

Formulation

« Suppose the matrix M € %‘ﬁx‘b consists of underlying parameters

for the Poisson observations is (approximate) low-rank.
« Assume a subset 2 C {(7,75) 1 <i<d;,1 <j<dy} and we
observe
Y;; ~ Poisson(M;;), V(z,7) € .
» Assumptions:
(i) M is not too spiky: M;; < « for some o > 0;
(ii) M is approximate low-rank: HMH < an/rdyds;
(iii) for Poisson case only: M;; > (3 for some 3 > 0. 3 can be
interpreted by the minimum Signal-to-Noise Ratio (SNR).

« Goal: Recover M based on the incomplete observations
Yéj? <27]> c {1,

Regularized maximume-likelihood estimator

« Method: Maximizing the log-likelihood function of the
optimization variable X given our observations subject to a set of
convex constraints.

« Log-likelihood function for Poisson matrix completion:

Fﬂjy(X) = ) Y;j 10g Xij — XZ]
(2,7)€$2

» Candidate set:

SE{X e R ||X|. < avrdds,

B <Xy <a,V(i,j) € |di] X |do]}.

= Estimator:

———

M = argmax Foy(X). (1)
Xes

Performance bounds

Performance metric: square error

R(M, M) = |M — M|[y.
Theorem (Upper bound): Assume M € §, (2 is chosen at random
following our Bernoulli sampling model with E[|Q2]] = m, and M is

the solution to (1). Then with a probability exceeding (1 — C'/(d1d>)),
we have

R(M. M) < (' | |
dldQ ( , )_ \l_e—T) ( /6 )
dy+do)? [ (di + do) log(didy)]
(a(62 — 2) +3log(d1d2)>, 1+ as 4 (dy + dy) log(dyd>)
. m | m

If m > (dy + do) log(dids), then (2) simplifies to

1 N ( T \ | \
R(M, M) < vac' |22 - T
dids 1l —e \ b, ) (3)

dy + do)'?
(e = 2) + 3log(didy)) - | 1m 2) .

« (', C' are absolute constants and 71" depends only on « and (.
» [ he expectation and probability are with respect to the random

Poisson observations and Bernoulli sampling model.
Proof sketch:

« Relate likelihood function deviate from Kullback-Leibler (K-L)

divergence

» Relate Hellinger distance to K-L divergence
« Lower bound for Hellinger distance

Remark: If the number of observations is on the order of (d; +
dy) log®(d,dy) with 6 > 2, mean squared error

| _
R(M., M 0 d
dle ( ) )é dS (1

Theorem (Lower bound): Fix o, 3, r, di, and ds to be such
that « > 1, o > 26, r > 4, and a*rmax{d;,ds} > C;. Fix €
be an arbitrary subset of |d;| X |ds| with cardinality m. Consider any
algorithm which, for any M € §, returns an estimator M . Then there

exists M € S such that with probability at least 3/4,

dQ) — OQ.

1 _
R(M, M)
e | 2 (@
2 min 1 , 02&3/2 r max{db dQ} -
200 | m

as long as the right-hand side of (4) exceeds C\ra*/ min{d;,ds},
where Cy, C; and (' are absolute constants. Here the probability is
with respect to the random Poisson observations only.

Remark: The gap between the upper bound in (3) and the lower
bound in (4) is asymptotical on the order of log(did,). This gap is
due to: (i) locally sub-gaussian property of Poisson distribution; (ii)
unbounded range of Poisson random variables. The same order of gap
can also be found in a recent similar work [2].

Penalized maximum likelihood singular value
threshold(PMLSVT)

PMLSVT algorithm for Poisson matrix completion

« Input: Y, ().
« Qutput: An approximate solution to (1).
- Define f(X) = —Foy(X) be the negative log-likelihood function.

Detine 11, as the projection of a matrix onto
Fl—{X€ %ledQ 6< 2]_ }

Algorithm 1 PMLSVT for Poisson matrix completion

1: Imtialize: The maximum number of iterations K, parameters
n, and t. [Myl;; = Y;; for (i,5) € Q and is (o + 3)/2
otherwise.

2: for k=1,2,... K do

3 C = Mp_1— (l/t)Vf(Mk_l)

4:  C =UDV* {singular value decomposition}

5: Dpew = diag((diag(D) — \/t))

6: M = HF1 (UDneWVT)

7. If f(My) > f(My_1) then t = nt, go to 4.

3
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If | f(My)
- end for

— f(Mp_1)| < 0.5/K then exit;

Examples and recovery results

(a) p = 0.5.
Figure: Matrix completion from partial observations: (a): 50% of entries observed

(dark spots represent missing entries); (b): images formed by complete matrix with
A = 0.1 and no more than 2000 iterations, and the run time of the PMLSVT

(b) A = 0.1, K = 2000.

algorithm is 1.1 seconds.
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(a) orlgmal data, p = 0.5. (b) A = 100, K = 4000.

Figure: Bike sharing count data: (a): observed matrix M with 50% missing
entries; (b): recovered matrix with A\ = 100 and 4000 iterations, with an elapsed
time of 3.1 seconds.
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