Background

- Matrix completion recover a matrix $M \in \mathbb{R}^{d_1 \times d_2}$ from incomplete observations.
- Low-rank matrix: (i) exact low-rank matrix: $rank(M) \leq r$; (ii) approximate low-rank matrix: $||M||_{\infty} \leq \alpha$ and $\operatorname{rank}(M) \leq r \Rightarrow \|M\|_* \leq \alpha \sqrt{rd_1d_2}.$
- Quantized matrix completion: observations and noise are 'quantized' and classical techniques can not guarantee the recovery performance. [1] gives the first result for a quantized case in which the observations are -1 or 1.
- Applications: Netflix problem, network traffic, counting data.
- Recovery algorithms: solving a penalized nuclear norm regularization optimization problem (convex optimization). \implies Can we guarantee the recovery performance for

Poisson observations?

Formulation

- Suppose the matrix $M \in \mathbb{R}^{d_1 imes d_2}_+$ consists of underlying parameters for the Poisson observations is (approximate) low-rank.
- Assume a subset $\Omega \subseteq \{(i, j) : 1 \leq i \leq d_1, 1 \leq j \leq d_2\}$ and we observe

$$Y_{ij} \sim \mathsf{Poisson}(M_{ij}), \quad \forall (i,j) \in \Omega$$

- Assumptions:
- (i) M is not too spiky: $M_{ij} \leq \alpha$ for some $\alpha > 0$; (ii) M is approximate low-rank: $||M||_* \leq \alpha \sqrt{rd_1d_2}$; (iii) for Poisson case only: $M_{ij} \ge \beta$ for some $\beta > 0$. β can be interpreted by the minimum Signal-to-Noise Ratio (SNR).
- Goal: Recover M based on the incomplete observations $Y_{ij}, (i, j) \in \Omega.$

Regularized maximum-likelihood estimator

- Method: Maximizing the log-likelihood function of the optimization variable X given our observations subject to a set of convex constraints.
- Log-likelihood function for Poisson matrix completion:

$$F_{\Omega,Y}(X) = \sum_{(i,j)\in\Omega} Y_{ij} \log X_{ij} - X_{ij}$$

- Candidate set: $\mathcal{S} \triangleq \{ X \in \mathbb{R}^{d_1 \times d_2}_+ : \|X\|_* \le \alpha \sqrt{rd_1d_2},$ $\beta \leq X_{ij} \leq \alpha, \forall (i,j) \in [d_1] \times [d_2] \}.$
- Estimator:
- $\hat{M} = \underset{X \subset S}{\operatorname{arg\,max}} F_{\Omega,Y}(X).$

Poisson Matrix Completion

Yang Cao and Yao Xie[†]

[†] H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology

Performance bounds

(1)

Performance metric: square error $R(\widehat{M}, M) = \|\widehat{M} - M\|_{F}^{2}$

we have

$$\frac{1}{d_1 d_2} R(M, \widehat{M}) \leq C' \left(\frac{8\alpha T}{1 - e^{-T}} \right) \cdot \left(\frac{\alpha \sqrt{r}}{\beta} \right) \cdot \left(\alpha (e^2 - 2) + 3 \log(d_1 d_2) \right) \cdot \left(\frac{d_1 + d_2}{m} \right)^{1/2} \cdot \left[1 + \frac{(d_1 + d_2) \log(d_1 d_2)}{m} \right]^{1/2}.$$
(2)

If $m \ge (d_1 + d_2) \log(d_1 d_2)$, then (2) simplifies to $\frac{1}{d_1 d_2} R(M, \widehat{M}) \le \sqrt{2} C' \left(\frac{8\alpha T}{1 - e^{-T}} \right) \cdot \left(\frac{\alpha \sqrt{r}}{\beta} \right)$ $\left(\alpha(e^2-2)+3\log(d_1d_2)\right)\cdot \left(\frac{d_1+d_2}{m}\right)^{1/2}$

- Poisson observations and Bernoulli sampling model.
- C', C are absolute constants and T depends only on α and β . The expectation and probability are with respect to the random **Proof sketch:**
- Relate likelihood function deviate from Kullback-Leibler (K-L) divergence
- Relate Hellinger distance to K-L divergence
- Lower bound for Hellinger distance
- **Remark:** If the number of observations is on the order of $(d_1 + d_2)$ $d_2 \log^{\delta}(d_1d_2)$ with $\delta > 2$, mean squared error

$$\frac{1}{d_1d_2}R(\widehat{M},M) \to 0 \quad \text{as} \quad (d_1+d_2) \to \infty.$$

 u_1u_2 **Theorem (Lower bound):** Fix α , β , r, d_1 , and d_2 to be such that $\alpha \geq 1$, $\alpha \geq 2\beta$, $r \geq 4$, and $\alpha^2 r \max\{d_1, d_2\} \geq C_0$. Fix Ω_0 be an arbitrary subset of $[d_1] \times [d_2]$ with cardinality m. Consider any algorithm which, for any $M \in \mathcal{S}$, returns an estimator \widehat{M} . Then there exists $M \in \mathcal{S}$ such that with probability at least 3/4,

> $\frac{1}{d_1d_2}R(M,\widehat{M})$ $\geq \min \left\{ \frac{1}{256}, C_2 \alpha^{3/2} \right\}$

as long as the right-hand side of (4) exceeds $C_1 r \alpha^2 / \min\{d_1, d_2\}$, where C_0 , C_1 and C_2 are absolute constants. Here the probability is with respect to the random Poisson observations only. **Remark:** The gap between the upper bound in (3) and the lower bound in (4) is asymptotical on the order of $log(d_1d_2)$. This gap is due to: (i) locally sub-gaussian property of Poisson distribution; (ii) unbounded range of Poisson random variables. The same order of gap can also be found in a recent similar work [2].

Theorem (Upper bound): Assume $M \in S$, Ω is chosen at random following our Bernoulli sampling model with $\mathbb{E}[|\Omega|] = m$, and M is the solution to (1). Then with a probability exceeding $(1 - C/(d_1d_2))$,

(3)

$$\left[rac{r \max\{d_1, d_2\}}{m}
ight]^{1/2}
ight\},$$
 (4)

PMLSVT algorithm for Poisson matrix completion

- Input: Y, Ω .

- $\Gamma_1 \triangleq \{ X \in \mathbb{R}^{d_1 \times d_2} : \beta \leq X_{ij} \leq \alpha \}.$

Alg	orithm 1
1:	Initialize:
	η , and t .
	otherwise
2:	for $k = 1$
3:	C = M
4:	C = U
5:	D_{new} =
6:	$M_k = 1$
7:	If $f(M$
8:	If $ f(\Lambda) $
9:	end for

algorithm is 1.1 seconds.

(a) original data, p = 0.5. (b) $\lambda = 100, K = 4000$. Figure: Bike sharing count data: (a): observed matrix M with 50% missing entries; (b): recovered matrix with $\lambda = 100$ and 4000 iterations, with an elapsed time of 3.1 seconds.

Penalized maximum likelihood singular value threshold(PMLSVT)

• Output: An approximate solution to (1). • Define $f(X) \triangleq -F_{\Omega,Y}(X)$ be the negative log-likelihood function. Define Π_{Γ_1} as the projection of a matrix onto

PMLSVT for Poisson matrix completion

The maximum number of iterations K, parameters $[M_0]_{ij} = Y_{ij}$ for $(i,j) \in \Omega$ and is $(\alpha + \beta)/2$ $1, 2, \ldots K \mathbf{do}$ $M_{k-1} - (1/t) \nabla f(M_{k-1})$ {singular value decomposition} DV^{T} $= \operatorname{diag}((\operatorname{diag}(D) - \lambda/t)_+)$ $\Pi_{\Gamma_1} \left(U D_{\text{new}} V^T \right)$ I_k) > $f(M_{k-1})$ then $t = \eta t$, go to 4. $M_k) - f(M_{k-1}) | < 0.5/K$ then exit;

(a) p = 0.5. (b) $\lambda = 0.1, K = 2000$. Figure: Matrix completion from partial observations: (a): 50% of entries observed (dark spots represent missing entries); (b): images formed by complete matrix with

 $\lambda = 0.1$ and no more than 2000 iterations, and the run time of the PMLSVT

[1] 1-Bit matrix completion. Information and Inference: A Journal of the IMA (Mark A. Davenport/Yaniv Plan/Ewout van den Berg/Mary Wootters,2014) [2] Low Rank Matrix Completion with Exponential Family Noise (Jean Lafond, 2015)