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Background

•Matrix completion recover a matrix M ∈ Rd1×d2 from incomplete
observations.

•Low-rank matrix:
(i) exact low-rank matrix: rank(M) ≤ r;
(ii) approximate low-rank matrix: ‖M‖∞ ≤ α and
rank(M) ≤ r ⇒ ‖M‖∗ ≤ α

√
rd1d2.

•Quantized matrix completion: observations and noise are
‘quantized’ and classical techniques can not guarantee the recovery
performance. [1] gives the first result for a quantized case in which
the observations are −1 or 1.

•Applications: Netflix problem, network traffic, counting data.
•Recovery algorithms: solving a penalized nuclear norm
regularization optimization problem (convex optimization).

=⇒ Can we guarantee the recovery performance for
Poisson observations?

Formulation

•Suppose the matrix M ∈ Rd1×d2
+ consists of underlying parameters

for the Poisson observations is (approximate) low-rank.
•Assume a subset Ω ⊆ {(i, j) : 1 ≤ i ≤ d1, 1 ≤ j ≤ d2} and we
observe

Yij ∼ Poisson(Mij), ∀(i, j) ∈ Ω.
•Assumptions:
(i) M is not too spiky: Mij ≤ α for some α > 0;
(ii) M is approximate low-rank: ‖M‖∗ ≤ α

√
rd1d2;

(iii) for Poisson case only: Mij ≥ β for some β > 0. β can be
interpreted by the minimum Signal-to-Noise Ratio (SNR).

•Goal: Recover M based on the incomplete observations
Yij, (i, j) ∈ Ω.

Regularized maximum-likelihood estimator

•Method: Maximizing the log-likelihood function of the
optimization variable X given our observations subject to a set of
convex constraints.

•Log-likelihood function for Poisson matrix completion:
FΩ,Y (X) = ∑

(i,j)∈Ω
Yij logXij −Xij.

•Candidate set:
S ,

{

X ∈ Rd1×d2
+ : ‖X‖∗ ≤ α

√
rd1d2,

β ≤ Xij ≤ α, ∀(i, j) ∈ [d1]× [d2]} .
•Estimator:

̂
M = arg max

X∈S
FΩ,Y (X). (1)

Performance bounds

Performance metric: square error
R( ̂
M,M) = ‖ ̂

M −M‖2
F .

Theorem (Upper bound): AssumeM ∈ S, Ω is chosen at random
following our Bernoulli sampling model with E[|Ω|] = m, and ̂

M is
the solution to (1). Then with a probability exceeding (1− C/(d1d2)),
we have
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If m ≥ (d1 + d2) log(d1d2), then (2) simplifies to
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•C ′, C are absolute constants and T depends only on α and β.
•The expectation and probability are with respect to the random
Poisson observations and Bernoulli sampling model.

Proof sketch:
•Relate likelihood function deviate from Kullback-Leibler (K-L)
divergence

•Relate Hellinger distance to K-L divergence
•Lower bound for Hellinger distance
Remark: If the number of observations is on the order of (d1 +
d2) logδ(d1d2) with δ > 2, mean squared error

1
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R( ̂
M,M)→ 0 as (d1 + d2)→∞.

Theorem (Lower bound): Fix α, β, r, d1, and d2 to be such
that α ≥ 1, α ≥ 2β, r ≥ 4, and α2rmax{d1, d2} ≥ C0. Fix Ω0
be an arbitrary subset of [d1]× [d2] with cardinality m. Consider any
algorithm which, for anyM ∈ S, returns an estimator ̂

M . Then there
exists M ∈ S such that with probability at least 3/4,
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as long as the right-hand side of (4) exceeds C1rα
2/min{d1, d2},

where C0, C1 and C2 are absolute constants. Here the probability is
with respect to the random Poisson observations only.
Remark: The gap between the upper bound in (3) and the lower
bound in (4) is asymptotical on the order of log(d1d2). This gap is
due to: (i) locally sub-gaussian property of Poisson distribution; (ii)
unbounded range of Poisson random variables. The same order of gap
can also be found in a recent similar work [2].

Penalized maximum likelihood singular value
threshold(PMLSVT)

PMLSVT algorithm for Poisson matrix completion
• Input: Y , Ω.
•Output: An approximate solution to (1).
•Define f (X) , −FΩ,Y (X) be the negative log-likelihood function.
Define ΠΓ1 as the projection of a matrix onto
Γ1 , {X ∈ Rd1×d2 : β ≤ Xij ≤ α}.

expansion of f(M) around Mk−1, keep up to second term and
then solve

Mk = arg min
M

[Qtk(M,Mk−1) + λ‖M‖∗] , (9)

with

Qtk(M,Mk−1) , f(Mk−1) + 〈M −Mk−1,∇f(Mk−1)〉

+
tk
2
‖M −Mk−1‖2F , (10)

where ∇f is the gradient of f , tk is the reciprocal of the step
size in the kth iteration, which we will specify later. By dropping
and introducing terms independent of M whenever needed (more
details can be found in [37]), (9) is equivalent to
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Using a theorem proved in [12], we may show (in appendix of
[?]) that the exact solution to (11) is given by a form of Singular
Value Thresholding (SVT):

Mk = Dλ/tk

(
Mk−1 −

1

tk
∇f(Mk−1)

)
, (12)

where Dτ (Σ) , diag{(σi − τ)+} and (x)+ = max{x, 0}.
The PMLSVT algorithm is summarized in Algorithm 1. In

the algorithm description, t is the reciprocal of the step size,
η > 1 is a scale parameter to change the step size, and K is
the maximum number of iterations, which is user specified: a
larger K leads to more accurate solution, and a small K obtains
the coarse solution quickly. If the cost function value does not
decrease, the step size is shortened to change the singular values
more conservatively. The algorithm terminates when the absolute
difference in the cost function values between two consecutive
iterations is less than 0.5/K. The convergence of algorithm
cannot be easily established; however, the propositions we have
above shed some lights on the convergence of PMLSVT as well.

Algorithm 1 PMLSVT for Poisson matrix completion

1: Initialize: The maximum number of iterations K, parameters
η, and t. [M0]ij = Yij for (i, j) ∈ Ω and is (α + β)/2
otherwise.

2: for k = 1, 2, . . .K do
3: C = Mk−1 − (1/t)∇f(Mk−1)
4: C = UDV T {singular value decomposition}
5: Dnew = diag((diag(D)− λ/t)+)
6: Mk = ΠΓ1

(
UDnewV

T
)

7: If f(Mk) > f(Mk−1) then t = ηt, go to 4.
8: If |f(Mk)− f(Mk−1)| < 0.5/K then exit;
9: end for

At each iteration, the complexity of PMLSVT is on the order
of O(d2

1d2 + d3
2) (which comes from the most expensive step of

performing singular value decomposition). This is much lower
than the complexity of solving an SDP, which is on the order of
O(d3

1+d1d
3
2+d2

1d
2
2). In particular, for a d-by-d matrix, PMLSVT

algorithm has complexity O(d3) versus solving the SDP has
complexity O(d4). One may also use an efficient approximate
SVD computation technique in [38] and smarter choice of step
length in [36] to accelerate Algorithm 1.

V. NUMERICAL EXAMPLES

We demonstrate the good performance of our estimator in
completing a solar flare image. The solar flare image is of size
48-by-48. We break the image into 8-by-8 patches, then collect
the vectorized patches into a 64-by-36 matrix: such a matrix
is well approximated by a low-rank matrix, as demonstrated in
Fig. 1 (b).

Rank = 10

Fig. 1: Solar flare image of size
48-by-48 with rank 10.

Suppose entries are ob-
served using our sampling
model with E|Ω| = m. Let
p , m/(d1d2), then we ob-
serve (100p)% of entries. We
use t = 10−4 and η = 1.1 in
the PMLSVT algorithm. Fig.
2 shows the recovery result
when 80%, 50% and 30% of
the image are observed. The
results show that our algorith-
m can recover the original
image accurately when 50%
or above of the image entries are observed. In the case of
only 30% of the image entries are observed, our algorithm still
captures the main features in the image. The PMLSVT algorithm
is very efficient: the running time on a laptop with 2.40Hz two
core CPU and 8GB RAM for all three examples are less than
1.2 seconds (much faster than solving SDP).

In this practical application, surprisingly, we find that the
box constraint is not binding by tracking the implementation of
the algorithm. In other words, we can achieve the same result
no matter whether we implement the projection step (step 6 in
Algorithm 1). Therefore, we may suggest ignore that step in
practice even if it is necessary for some extreme cases and our
theoretical analysis. Without step 6, Algorithm 1 is the same as
that in [29] and convergence analysis is also established there.
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Examples and recovery results

(a) p = 0.5. (b) λ = 0.1, K = 2000.
Figure: Matrix completion from partial observations: (a): 50% of entries observed
(dark spots represent missing entries); (b): images formed by complete matrix with
λ = 0.1 and no more than 2000 iterations, and the run time of the PMLSVT
algorithm is 1.1 seconds.
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(a) original data, p = 0.5. (b) λ = 100, K = 4000.
Figure: Bike sharing count data: (a): observed matrix M with 50% missing
entries; (b): recovered matrix with λ = 100 and 4000 iterations, with an elapsed
time of 3.1 seconds.
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