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Overview

This paper investigates the problem of online monitoring high-dimensional stream-
ing data in resource constrained environments, where one has limited capacity in
data acquisi- tion, transmission or processing, and thus can only observe or utilize
partial, not full, data for decision making.

• We propose a multi-armed bandit approach to adaptively sampling useful
local compo- nents of data, and our method, termed
Thompson-Sampling-Shiryaev-Roberts-Pollak (TSSRP) algorithm, is to
combine the Thompson Sampling algorithm in the multi-armed bandits prob-
lem with the Shiryaev-Roberts-Pollak procedure in the sequential
change-point detection literature.

• Our proposed TSSRP algorithm is able to balance between exploiting those
ob- served local components that maximize the immediate detection
performance and exploring new local components that might accumulate new
information to improve future detection performance.

Problem Statement and Background

Problem Formulation.
• K-dimensional data Xt = (X1,t, · · · , XK,t),
• q out of K (q < K) local components of Xt can be observed
• Before a change time ν, Xt i.i.d. follows f (θ0, x); after ν, Xt i.i.d. follows f (θ1, x)
• Assume θ1 − θ0 is sparse
• We are repeatedly test H0 : ν =∞ vs H1 : ν = 1, 2, . . .

Thompson Sampling for Multi-Armed Bandit

Proposed Method

At the high level, we propose to follow the Thompson Sampling algorithm that sam-
ples those local components or local data streams that have the largest (randomized)
posterior distributions of local changes having occurred, and then take a limiting
Bayes approach as in Shiryaev-Robert-Pollak procedure to develop efficient algorithms
for adaptively sampling and global online monitoring.

There are three steps in our proposed adaptive sampling strategy.

• Local Statistics
When observable

Rk,t = f1(Xk,t)
f0(Xk,t)

(Rk,t−1 + 1) (1)

when unobservable
Rk,t = Rk,t−1 + 1 (2)

• Adaptive Sensors Allocation Randomize the local statistics. Note that the
randomized value can be computed recursively by random sample the initial
value.

• Global Stopping Time When the sum of top-r original local statistics exceeds
the threshold

T = inf{t ≥ 1 :
r∑
k=1

R(k),t ≥ d} (3)

Theoretical Properties

Proposition 1 Under the case that ν = ∞, for ∀k ∈ [n], ∀t > 0, there ∃t′ > t
such that P(k ∈ St) > 0.
Proposition 2 Under the case that ν < ∞, for ∀k ∈ C, we have P(k ∈ St,∀t >
t0|k ∈ Qt0) > 0 for any t0 > ν.
Theorem [Average Run Length] Define the stopping time as TA = inf{t :∑r

k=1R(k),t ≥ A}, then E∞(TA) ≥ A
r .

Simulation

Independent Multivariate Gaussian variables
Setting: K = 100, q = 10, r = 3, pre-change N(0, 1), post-change N(2, 1), E∞TA =
1000
(All the results are obtained from 10000 replications.)

Figure 1: Detection delay for 100 data streams case by sum of top 3 local statistics

Real Data

Figure 2: Snapshot of Solar Flare

We use the solar flare data in [3]. The results comparison is as follows:
• TSSRP: t=192, t=219
• Optimal TRAS: t=190, t=221
• Full observation: t=191, t=217
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