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Abstract
We investigate two important properties of M-estimator, namely robustness and tractability,
in linear regression when the data are contaminated by arbitrary outliers.
Robustness: the statistical property that the estimator should always be close to the true pa-
rameters regardless of the distribution of the outliers
Tractability: the computational property that the estimator can be computed efficiently even
though the objective function can be non-convex.
In this article, by learning the landscape of the empirical risk, we show that under the high-
dimensional setting in which p >> n, many penalized M-estimators with L1 regularizer en-
joy nice robustness and tractability properties simultaneously when the percentage of out-
liers is small.

Introduction
Why we need robust regression? Find a good model for majority data, Detect outliers, etc.

Why consider M-estimators?
1. Formulation is simple but general.
2. Statistical properties are well-studied (Consistency and Asymptotic normality [3].)
3. Good robust properties (large breakdown point and bounded influence function [1].)

Our objective: Investigate the tractability of M-estimators and the relation with robustness.

Model
Assume we have n pairs data {(yi, xi)}i=1,2,..,n, which are generated from the linear model
with gross-error [2]:

yi = 〈θ0, xi〉+ εi, where yi ∈ R, xi ∈ Rp,
εi ∼ (1− δ)f0 + g,where f0 and g denote the density for the idealized noise and outliers.

Remarks:
1. δ ∈ [0, 1] denotes the percentage of outliers.
2.f0 has nice idealized properties: symmetric, zero mean, independent to xi, subgaussian.
3. g may be arbitrary: could be asymmetric, nonzero mean, dependent to xi.

M-estimators in low-dimensional case
In general, a M-estimator is obtained by solving the optimization problem:

Minimize:
θ

R̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉), (1)

subject to: ‖θ‖2 ≤ r.

Here ρ : R→ R is the loss function, and often is non-convex.

Table 1: Some well-known loss functions for M-estimators
Type ρ(t) ψ(t) = ρ′(t)

Least Square t2/2 t

Tukey c2

6

(
1− (1− (t/c)2)3

)
, |t| ≤ c t(1− (t/c)2)2, |t| ≤ c

c2/6, |t| ≥ c 0, |t| > c

Welsch 1−exp(−αt2/2)
α t exp(−αt2/2)

Theoretical result
We define the score function ψ(z) := ρ′(z).

Assumption 1(a) The score function ψ(z) is twice differentiable and odd in z with ψ(z) ≥ 0 for all
z ≥ 0. Moreover, we assume max{||ψ(z)||∞, ||ψ′(z)||∞, ||ψ′′(z)||∞} ≤ Lψ.

(b) The feature vector xi are i.i.d with zero mean and τ2-sub-Gaussain, that is E[e〈λ,xi〉] ≤
exp( 1

2τ
2||λ||22) for all λ ∈ Rp.

(c) The feature vector xi spans all direction in Rp, that is E[xix
T
i ] � γτ2Ip×p for some 0 < γ < 1.

(d) The idealized noise distribution f0(ε) is symmetric and decreasing for ε > 0.

Theorem 1
Assume assumption 1 holds and ||θ0||2 ≤ r/3. There exists constants η0 = δ

1−δC1 and η1 = C2 −
C3δ > 0, such that for any π > 0, there exist constant Cπ depends on π, γ, r, τ, ψ, f0 but independent
of n, p, δ and g , such that as n ≥ Cπp log n, the following statements hold with probability at least
1− π :

(a) For all ||θ − θ0||2 > 2η0,

〈θ − θ0,∇R̂n(θ)〉 > 0. (2)

There is no stationary point of R̂n(θ) outside of the ball Bp(θ0, 2η0).

(b) For all ||θ − θ0||2 ≤ η1,

λmin(∇2R̂n(θ)) > 0. (3)

R̂n(θ) is strong convex in the ball Bp(θ, η1)

Thus, as long as 2η0 < η1, R̂n(θ) has a unique stationary point, which lies in the ball Bp(θ0, 2η0).

This is the unique global optimal solution of (1), and denote this unique stationary point by θ̂n.

(c) There exists a positive constant κ that depends on π, γ, r, ψ, δ, f0 but independent of n, p and g,
such that

||θ̂n − θ0||2 ≤ η0 +
4τ

κ

√
Cπp log n

n
. (4)

Penalized M-estimators in high-dimensional case
We consider the case when p >> n and the support of θ0 is sparse. We consider the penalized
M-estimators by solving the optimization problem [4]:

Minimize:
θ

L̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉) + λn||θ||1, (5)

subject to: ‖θ‖2 ≤ r.

Assumption 2
The feature vector x is bounded, i.e., there exists constant M > 1 that is independent of dimension p
such that ||x||∞ ≤Mτ almost sure.

Theorem 2
Assume that Assumption 1 and Assumption 2 hold and the true parameter θ0 satisfies ||θ0||2 ≤
r/3 and ||θ0||0 ≤ s0. Then there exist constants such C,C0, C1, C2 that are dependent
on (ρ()̇, Lψ, τ

2, r, γ, π) but independent on (δ, s0, n, p,M) such that as n ≥ Cs0 log p and

λn = C0M
√

log p
n + δ C1√

s0
, the following hold with probability as least π :

(a) Any stationary points of problem (5) is in Bp2(θ0, η0 +
√
s0

1−δλnC2)

(b) As long as n is large enough such that n ≥ Cs0 log2 p and the contamination ratio δ is smaller
such that (η0 + 1

1−δ
√
s0λnC2) ≤ η1, the problem (5) has a unique local stationary point which

is also the global minimizer.

Remarks:
When δ = 0,we have η0 = 0 and η1 = C > 0. Thus, by setting λn = O(

√
log p
n ), if s0 = o( n

log p ),

there is a unique stationary point of (5).

Illustration of our theoretical results
Based on our theorems, the two values η0 = δ

1−δC1 and η1 = C2 − C3δ > 0 are important.
For the penalized M-estimator for the high-dimensional case, we further define a constant rs
and a cone A by

rs = η0 +

√
s0

1− δ
λnC2 (6)

A = {θ0 + ∆ : ||∆Sc
0
||1 ≤ 3||∆S0

||1}. (7)

Then we can illustrate our theoretical results by the following two figures.

Figure 1: R̂n(θ) in Low-dimensional case Figure 2: L̂n(θ) in high-dimensional case

Simulation results
Settings:
xi ∼ N(0, Ip×p) and responses yi = 〈θ0, xi〉+ εi, where ||θ0||2 = 1.
εi ∼ (1− δ)N(0, 1) + δN(||xi||22 + 1, 32).
r = 10, p = 10, n = 200

Loss: ρα(t) = 1−exp(−αt2/2)
α (Welsch’s)

Algorithm: gradient descent with 20 random initial points.
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Figure 3: The convergence of gradient descent al-
gorithm for different δ. y-axis is with log scale.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

contamination ratio 

0

0.5

1

1.5

2

2.5

3

=0

=0.05

=0.1

=0.2

=0.3

Figure 4: The estimation error for different α and
δ
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