Collaborative Spectral Clustering in Attributed Networks

Xiaodong Jiang and Pengsheng Ji

Introduction

We propose a novel spectral clustering algorithm for attributed networks, where each node has pdimensional meta-covariates from various formats such as text, image, speech, etc. The connectivity matrix $W_{n \times n}$ is constructed with the adjacency matrix $A_{n \times n}$ and covariate matrix $X_{n \times p}$, and $W = (1 - \alpha)A + \alpha K(X, X')$, where $\alpha \in [0, 1]$ and K is a kernel to measure the covariate similarities. We then perform the classical k-means algorithm on the element-wise ratio matrix of the first K leading eigenvector of W. Theoretical and simulation studies show the consistent performance under both Stochastic Block Model (SBM) and Degree-Corrected Block Model (DCBM), especially in unbalanced networks where most community detection algorithms fail.

The Algorithm - Collaborative Spectral Clustering

- Algorithm 1 CSC with Row-Normalization
- 1: procedure $CSC(A, X, \alpha, R)$
- 2: Obtain the sum of column variance

$$\hat{\sigma}^2 = \sum_{j=1}^p \operatorname{Var}[x_{.j}]$$

3: Calculate $K = (k(x_i, x_j))_{n \times n}$, where

Traditional Community Detection

Figure 1: Theoretical ML and Dimension Reduction, Ji and Jin (2016)

Attributed Network Structure

$$k(x_{i}, x_{j}) = \exp(-\frac{||x_{i}, -x_{j}||^{2}}{2\hat{\sigma}^{2}})$$

- 4: Obtain leading eigenvectors $U = \{u_1, ..., u_R\}$ of $W = (1 \alpha)A + \alpha K$
- 5: Obtain U^* s.t.

$$U^{*}(i,j) = \frac{U(i,j)}{\sqrt{\sum_{j=1}^{R} U^{2}(i,j)}}$$

6: Apply k-means to U^* .

7: end procedure

Theoretical Results

Lemma 1. (Principal subspace perturbation bound) Let W and E(W) have eigenvalues $\hat{\lambda}_1, ..., \hat{\lambda}_n$ and $\lambda_1, ..., \lambda_n$ respectively. Let the first R leading eigenvectors corresponding to the R largest leading eigenvalues be \hat{U} and U for W and E[W], then there exists an orthogonal matrix \hat{O} , such that,

$$||\hat{U}\hat{O} - U||_F \le \frac{2^{3/2}\sqrt{nr}\max\{C\sqrt{n}\sqrt{d}, c\sqrt{\frac{\log p}{p}}\}}{\min\{\lambda_{R-1} - \lambda_R, \lambda_R - \lambda_{R+1}\}}$$

Theorem 1. (Concentration bound on connectivity matrix under NSBM) Let $W = (1 - \alpha)A + \alpha K$, then $||W - E[W]||_{\infty} \leq (1 - \alpha)C\sqrt{n}\sqrt{d} + \alpha c\sqrt{\frac{\log p}{p}}$ with probability at least $1 - \max\{n^{-r}, n^2p^{-\rho c^2}\}$

Theorem 2. (Error bound of k-means on leading eigenvectors) Under NSBM with Gaussian distributions in \mathcal{F} , the error bound of k-means on the first R leading eigenvectors is

 $||\mathbf{z}|| = 64mnr \max\{C\sqrt{n}\sqrt{d}, c\sqrt{\frac{\log p}{n}}\}^2$

Figure 2: Network Structure with Node Attributes

Node Attributed Stochastic Block Model (NSBM)

Let f be a mixture of R p-dimensional distributions

$$f(x) = \sum_{r=1}^{R} \lambda_r f_r(x; \psi_r)$$

The adjacent and node attribute matrices of nSBM are generated as follows,

- a. The adjacent matrix $A = (a_{ij})_{n \times n}$ is generated as $a_{ij} \sim Bernoulli(P_{g_ig_j})$ independently for $i \neq j$, otherwise 0.
- b. The $n \times p$ node attribute matrix X is generated as $X_i \sim f_r$ if $g_i = r$.

$$\frac{||Z||}{N} \le \frac{0 \operatorname{Interf} \operatorname{Interf} (0 \sqrt{n} \sqrt{a}, 0 \sqrt{p})}{N \min\{\lambda_{R-1} - \lambda_R, \lambda_R - \lambda_{R+1}\}^2}$$

where $m = \max{(M^T M)_{ii}}$.

Results with Paper Citation Network with Abstracts

Table 2: Community detection results from CSC-SCORE with $\alpha = 0.8$

ID	Title	Author	Year
1	Retrospective Markov chain Monte Carlo methods	Omiros Papaspiliopoulos	2007
	for Dirichlet process hierarchical models	and Roberts	
1	An ANOVA model for dependent random measures	Iorio et al	2004
1	Bayesian nonparametric spatial modeling with Dirichlet process mixing	Gelfand et al	2005
1	Hierarchical Dirichlet processes	Teh et al	2005
1	Bayesian density regression	Dunson and Pillai	2007
1	A method for combining inference across related nonparametric Bayesian models	Müller et al	2004
2	Empirical Bayes selection of wavelet thresholds	Johnstone	2005
2	Covariance matrix selection and estimation via penalised normal likelihood	Huang et al	2006
2	New estimation and model selection procedures for	Fan and Li	2004
	semiparametric modeling in longitudinal data analysis		
2	One-step sparse estimates in nonconcave penalized likelihood models	Zou and Li	2008
2	Nonconcave penalized likelihood with a diverging number of parameters	Fan and Peng	2004
3	A stochastic process approach to false discovery control	Genovese and Wasserman	2004
3	Regularization and variable selection via the elastic net	Zou and Hastie	2005
3	The Dantzig selector: statistical estimation when p is much larger than n	Candes and Tao	2005
3	High-dimensional graphs and variable selection with the lasso	Meinshausen and Bühlmann	2006
3	The adaptive lasso and its oracle properties	Zou	2006
Three communities are well built, where Community 1 is <i>Bayesian Statistics</i> . Community 2 is <i>Nonnarametrics</i> and Community			

e communities are well built, where Community 1 is *Bayesian Statistics*, Community 2 is *Nonparametrics*, and Community 3 is lasso related group.

Figure 3: Results with Paper Citation Network with Abstracts

Conclusions

• In this work we proposed a novel and flexible model for node-attributed network data for both degree-free and degree-corrected versions.

Node Attributed Degree-Corrected Model (NDCBM)

The adjacency matrix and node attribute matrix are generated as follows:

a. The adjacency matrix $A = (a_{ij})_{n \times n}$ is generated as

 $a_{ij} \sim \text{Bernoulli}(\theta_i \theta_j P_{g_i g_j})$

independently for $i \neq j$, otherwise 0.

b. The $n \times p$ node attribute matrix X is generated as $X_i \sim f_r$ if $g_i = r$.

• We proposed two types of algorithms to perform clustering on node-attributed network data.

• We also provided theoretical guarantees for the performance of our algorithm.

• Our algorithm outperform all existing works in extensive simulation studies. We also tested with real word data including paper-paper citation network with abstracts.

Contacts

Xiaodong Jiang (xiaodong@uga.edu), Department of Statistics, University of Georgia
Pengsheng Ji (psji@uga.edu), Department of Statistics, University of Georgia