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Introduction

We propose a novel spectral clustering algorithm for attributed networks, where each node has p-

dimensional meta-covariates from various formats such as text, image, speech, etc. The connectivity

matrix Wn×n is constructed with the adjacency matrix An×n and covariate matrix Xn×p, and

W = (1 − α)A + αK(X,X ′), where α ∈ [0, 1] and K is a kernel to measure the covariate similar-

ities. We then perform the classical k-means algorithm on the element-wise ratio matrix of the first

K leading eigenvector of W . Theoretical and simulation studies show the consistent performance

under both Stochastic Block Model (SBM) and Degree-Corrected Block Model (DCBM), especially

in unbalanced networks where most community detection algorithms fail.

Traditional Community Detection

Figure 1: Theoretical ML and Dimension Reduction, Ji and Jin (2016)

Attributed Network Structure

Figure 2: Network Structure with Node Attributes

Node Attributed Stochastic Block Model (NSBM)

Let f be a mixture of R p-dimensional distributions

f (x) =

R∑
r=1

λrfr(x;ψr)

The adjacent and node attribute matrices of nSBM are generated as follows,

a. The adjacent matrix A = (aij)n×n is generated as aij ∼ Bernoulli(Pgigj) independently for i 6= j,

otherwise 0.

b. The n× p node attribute matrix X is generated as Xi· ∼ fr if gi = r.

Node Attributed Degree-Corrected Model (NDCBM)

The adjacency matrix and node attribute matrix are generated as follows:

a. The adjacency matrix A = (aij)n×n is generated as

aij ∼ Bernoulli(θiθjPgigj)

independently for i 6= j, otherwise 0.

b. The n× p node attribute matrix X is generated as Xi· ∼ fr if gi = r.

The Algorithm - Collaborative Spectral Clustering

Algorithm 1 CSC with Row-Normalization

1: procedure CSC(A,X, α, R)

2: Obtain the sum of column variance

σ̂2 =

p∑
j=1

Var[x·j]

3: Calculate K = (k(xi·, xj·))n×n, where

k(xi·, xj·) = exp(−
||xi· − xj·||2

2σ̂2
)

4: Obtain leading eigenvectors U = {u1, ..., uR} of W = (1− α)A + αK

5: Obtain U∗ s.t.

U∗(i, j) =
U(i, j)√∑R
j=1U

2(i, j)

6: Apply k-means to U∗.
7: end procedure

Theoretical Results

Lemma 1. (Principal subspace perturbation bound) Let W and E(W ) have eigenvalues λ̂1, ..., λ̂n
and λ1, ..., λn respectively. Let the first R leading eigenvectors corresponding to the R largest

leading eigenvalues be Û and U for W and E[W ], then there exists an orthogonal matrix Ô,

such that,

||ÛÔ − U ||F ≤
23/2√nrmax{C
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√
log p
p }

min{λR−1 − λR, λR − λR+1}
Theorem 1. (Concentration bound on connectivity matrix under NSBM) Let W = (1 −
α)A + αK, then ||W − E[W ]||∞ ≤ (1 − α)C
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Theorem 2. (Error bound of k-means on leading eigenvectors) Under NSBM with Gaussian

distributions in F , the error bound of k-means on the first R leading eigenvectors is

||Z||
N
≤
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2

N min{λR−1 − λR, λR − λR+1}2

where m = max (MTM)ii.

Results with Paper Citation Network with Abstracts

Figure 3: Results with Paper Citation Network with Abstracts

Conclusions

• In this work we proposed a novel and flexible model for node-attributed network data for both

degree-free and degree-corrected versions.

•We proposed two types of algorithms to perform clustering on node-attributed network data.

•We also provided theoretical guarantees for the performance of our algorithm.

•Our algorithm outperform all existing works in extensive simulation studies. We also tested with

real word data including paper-paper citation network with abstracts.
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