We consider an experiment with two qualitative factors at 2 levels each and a binary response, that follows a generalized linear model. In Mandal, Yang and Majumdar (2010) we obtained basic results and characterizations of locally D-optimal designs for special cases. As locally optimal designs depend on the assumed parameter values, a critical issue is the sensitivity of the design to misspeciffication of these values. In this paper we study the sensitivity theoretically and by simulation, and show that the optimal designs are quite robust. We use the method of cylindrical algebraic decomposition to obtain locally D-optimal designs in the general case.

TR Number: 
Jie Yanga, Abhyuday Mandal, Dibyen Majumdar
Key Words: 
Generalized linear model, full factorial design, cylindrical algebraic decomposition, D-optimality, information matrix, relative loss of efficiency, uniform design.

To request a copy of this report, please email us. We will send you a pdf copy if one is available.